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Abstract

Aim: The aim of the present study is to investigate the relationship between both functional connectivity and
brain networks with cognitive decline, in patients with Parkinson’s disease (PD).
Introduction: PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor distur-
bances can occur, with cognitive impairment being one of the most common. However, how the large-scale or-
ganization of brain activity differs in cognitively impaired patients, as opposed to cognitively preserved ones,
remains poorly understood.
Methods: Starting from source-reconstructed resting-state magnetoencephalography data, we applied the phase
linearity measurement (PLM) to estimate functional connectivity, globally and between brain areas, in PD pa-
tients with and without cognitive impairment (respectively PD-CI and PD-NC), as compared with healthy sub-
jects (HS). Further, using graph analysis, we characterized the alterations in brain network topology and related
these, as well as the functional connectivity, to cognitive performance.
Results: We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl’s gyrus, and in-
ferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere,
in the gamma band, in PD-CI patients, as compared with PD-NC and HS. With regard to the global topological
features, PD-CI patients, as compared with HS and PD-NC patients, showed differences in multi-frequencies
bands (delta, alpha, gamma) in the Leaf fraction, Tree hierarchy (Th) (both higher in PD-CI), and Diameter
(lower in PD-CI). Finally, we found statistically significant correlations between the Montreal Cognitive Assess-
ment test and both the Diameter in delta band and the Th in the alpha band.
Conclusion: Our work points to specific large-scale rearrangements that occur selectively in cognitively com-
promised PD patients and are correlated to cognitive impairment.

Keywords: brain networks topology; cognition; functional connectivity; graph theory; magnetoencephalography;
synchrony

Impact Statement

In this article, we want to test the hypothesis that the cognitive decline observed in Parkinson’s disease (PD) patients may be
related to specific changes of both functional connectivity and brain network topology. Specifically, starting from magneto-
encephalography signals and by applying the phase linearity measurement (PLM), a connectivity metric that measures the
synchronization between brain regions, we were able to highlight differences in the global and nodal PLM values in PD
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patients with cognitive impairment as compared with both cognitively unimpaired patients and healthy subjects. Further,
using graph analysis, we analyzed alterations in brain network topology that were related to cognitive functioning.

Introduction

Unlike what James Parkinson claimed more than 200
years ago about the disease bearing his name (‘‘the

senses and intellects being uninjured’’) (Walshe, 1961),
today we know that Parkinson’s disease (PD) is not solely
a motor disease (Vitale et al., 2012). Indeed, PD is character-
ized by a broad spectrum of non-motor symptoms, including
neuropsychiatric disturbances, autonomic dysfunctions, and
cognitive decline. After 20 years of disease duration, up to
80% of patients present with severe cognitive symptomatol-
ogy (Aarsland et al., 2009). However, despite extensive in-
vestigation, the pathophysiological mechanisms underlying
cognitive decline remain unclear (Aarsland and Kurz, 2010).

In the early stage of the disease, the brainstem and the sur-
viving neurons of the nigrostriatal dopamine system are
mostly affected by alpha synuclein depositions whereas,
with disease progression, the neuropathological process
spreads to other brain regions, including the cortex (Braak
et al., 2003). Hence, PD may be regarded as a whole-brain
disease.

Cognitive functions need coordinated interactions be-
tween multiple brain areas. Synchronization is one of the pu-
tative mechanisms of information routing across brain areas
(Buzsáki and Draguhn, 2004). Accordingly, different elec-
troencephalographic or magnetoencephalographic (MEG)
studies observed a relationship between neural synchrony
and cognitive functions (Singer, 1999; Varela et al., 2001).

Graph theory is a mathematically principled way to repre-
sent complex interactions among multiple elements. In this
context, brain areas are represented as nodes, and their inter-
actions are the links (Rubinov and Sporns, 2010; Sporns
et al., 2005). Measuring topological features of the brain net-
works is informative about the large-scale organization un-
derpinning cognitive processes. Recently, the graph theory
has been applied to MEG signals in neurodegenerative dis-
eases, demonstrating alterations in structural organization
(Pievani et al., 2014) as well as in brain functional networks,
such as in amyotrophic lateral sclerosis (Sorrentino et al.,
2018), hereditary spastic paraplegia (Rucco et al., 2019),
and mild cognitive impairment ( Jacini et al., 2018).

Given its high spatiotemporal resolution, MEG is a useful
tool for detecting the evolution of brain functional connectiv-
ity. The MEG systems measure the magnetic fields produced
by neuronal activity, which are undistorted by the layers sur-
rounding the brain. Therefore, it is possible to reconstruct the
neural signals produced by different brain areas (source
space) (Baillet, 2017). In particular, MEG has a millisecond
temporal resolution, making it possible to study frequency-
specific networks, and records the oscillatory activity of
brain regions, allowing to estimate the phase of brain signals
and, hence, synchronization (Varela et al., 2001). Typically,
the canonical frequency bands (delta, theta, alpha, beta, and
gamma) are taken into account to understand the cognitive
processes (Lopes da Silva, 2013).

Stoffers and associates (2007) have analyzed the MEG
signals during resting state in a group of de novo PD pa-

tients, finding changes in brain activity, which included a
widespread increase in theta and low alpha power, and a
loss of beta and gamma power. However, they did not
find correlations between brain activity and disease dura-
tion, disease stage (i.e., Hoehn and Yahr [H&Y]) (Hoehn
and Yahr, 1967) and disease severity (i.e., Unified Parkinson’s
Disease Rating Scale [UPDRS-III]) (Fahn, 1987). The authors
hypothesized that the spectral power changes may be linked to
the degeneration of non-dopaminergic ascending neurotrans-
mitter systems. It has been demonstrated, especially in func-
tional magnetic resonance imaging (MRI) studies, that the
disruption of resting-state functional connectivity is important
in the development of cognitive decline in PD (Amboni et al.,
2018; Tessitore et al., 2012a).

Some studies have compared, using MEG, the brain activ-
ity of non-demented and demented PD patients with that of
matched healthy subjects (HS). All in all, a general trend
was found toward the slowing of resting brain activity in de-
mented and (to a lesser extent) non-demented patients, as
compared with HS. This slowing of oscillatory brain activity
can be interpreted as a mechanism related to the progression
of the disease and may be potentially involved in the devel-
opment of dementia in PD (Bosboom et al., 2006; Dubbelink
et al., 2013).

In a source-level, resting-state MEG study, Olde Dubbe-
link and associates (2014) found pathologically altered func-
tional networks in de novo PD patients, which can be
interpreted as a reduction in local integration with preserved
overall efficiency of the brain network. Further, they have
analyzed longitudinally 43 PD patients also, discovering pro-
gressive impairment in local integration in multiple fre-
quency bands and loss of global efficiency in the PD brain
network, related to a worse performance in the Cambridge
Cognition Examination (CAMCOG) scale (a test assessing
the global cognitive function) (Roth et al., 1986).

Ultimately, starting from the observation that the synchro-
nization in specific frequency bands between different brain
areas is the basis of a variety of cognitive processes, our hy-
pothesis is that in PD there could be abnormal neuronal syn-
chronization that is reflected in changes in functional
connectivity and, possibly, in the topological features of
the brain networks. More specifically, we hypothesize that,
in PD, the progressive alteration of the brain networks
would be more pronounced in patients with clinically evident
cognitive impairment, as compared with cognitively unim-
paired patients.

To test our hypotheses, we performed a resting-state MEG
recording in PD patients with and without cognitive impair-
ment, and age- and sex-matched HS. We estimated synchro-
nization between the brain source-reconstructed time series
by using the phase linearity measurement (PLM) (Baselice
et al., 2019). We then applied the minimum spanning tree
(MST) algorithm (Tewarie et al., 2015) to reconstruct the
brain networks, and we analyzed functional connectivity
among both brain areas and topological features of the net-
work. Finally, we correlated our results to clinical motor,
cognitive, and behavioral PD-specific scales.
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Materials and Methods

Participants

Thirty-nine early PD patients were diagnosed according to
the modified diagnostic criteria of the UK Parkinson’s Dis-
ease Society Brain Bank (Gibb and Lees, 1988) and recruited
at the Movement Disorders Unit of the First Division of Neu-
rology at the University of Campania ‘‘Luigi Vanvitelli’’
(Naples, Italy). All subjects were right-handed and native
Italian speakers.

Inclusion criteria were: (1) PD onset after the age of 40
years, to exclude early onset parkinsonism; (2) a modified
H&Y stage £2.5. Exclusion criteria were: (1) dementia asso-
ciated with PD according to consensus criteria (Emre et al.,
2007); (2) any other neurological disorder or clinically sig-
nificant or unstable medical condition; and (3) any contrain-
dications to MRI or MEG recordings. Disease severity was
assessed by using the H&Y stages and the UPDRS III.
Motor clinical assessment was performed in the ‘‘off-
state’’ (off-medication overnight). Levodopa equivalent
daily dose (LEDD) was calculated for both dopamine ago-
nists and dopamine agonists + L-dopa (total LEDD) (Tom-
linson et al., 2010).

Global cognition was assessed by means of Montreal Cog-
nitive Assessment (MoCA) (Nasreddine et al., 2005). The
MoCA consists of 12 subtasks exploring the following cog-
nitive domains: (1) memory (score range 0–5), assessed by
means of delayed recall of five nouns, after two verbal pre-
sentations; (2) visuospatial abilities (score range 0–4),
assessed by a clock-drawing task (3 points) and by copying
of a cube (1 point); and (3) executive functions (score
range 0–4), assessed by means of a brief version of the
Trail Making B task (1 point).

The patients were classified in two groups based on their
age- and education-adjusted Italian cut-off MoCA score
(Conti et al., 2015). According to these criteria, we selected

20 and 19 PD patients with MoCA score, respectively
lower/equal (PD with cognitive impairment, PD-CI) or higher
(PD with normal cognition, PD-NC) than the cut-off of
23. Depressive and apathy symptoms were assessed with the
Beck Depression Index (BDI) (Beck et al., 1961) and the Apa-
thy Evaluation Scale (AES) (Marin et al., 1991), respectively.

Twenty HS, matched for age, education, and sex, were
also enrolled (Table 1).

The study was approved by the local Institutional Human
Research Ethics Committee, and it was conducted in accor-
dance to the Declaration of Helsinki. All participants signed
informed consent.

MRI acquisition

The MR images were acquired on a 3-T scanner equipped
with an 8-channel parallel head coil (General Electric
Healthcare, Milwaukee, WI, USA) either after, or a mini-
mum of 21 days (but not more than 1 month) before the
MEG recording. Three-dimensional T1-weighted images
(gradient-echo sequence Inversion Recovery prepared Fast
Spoiled Gradient Recalled-echo, time repetition = 6988 msec,
TI = 1100 msec, TE = 3.9 msec, flip angle = 10, voxel size = 1 ·1
· 1.2 mm3) were acquired.

MEG acquisition

The MEG system acquires the signals of 163 magnetometers
placed in a magnetically shielded room (AtB Biomag, Ulm,
Germany). Specifically, 154 sensors cover the entire head of
the subject; the remaining ones, organized into three orthogo-
nal triplets, are positioned more distant from the helmet and
used to measure and reduce the environmental noise (Lardone
et al., 2018; Sorrentino et al., 2017). The MEG data were ac-
quired during two, eyes-closed, resting-state segments, each
3.5 min long. The patients were in the off-state (i.e., after
drug withdrawal for 24 h, without the effects of the therapy).

Table 1. Demographic and Clinical Features of Parkinson’s Disease Patients and Healthy Subjects

PD-CI (n = 20),
mean – SD

PD-NC (n = 19),
mean – SD

HS (n = 20),
mean – SD p

Age 67.90 – 8.73 61.00 – 7.73 63.10 – 8.53 p = 0.04
Sex (M/F) 10/10 6/13 11/9 NS*
Disease duration (months) 31.00 – 13.66 35.16 – 16.36 — NS
H&Y stage 1.88 – 0.50 1.82 – 0.44 — NS
UPDRS III 26.40 – 11.03 23.58 – 7.08 — NS
MoCA (total) 19.96 – 2.30 25.05 – 1.63 — <0.001
Memory 0.70 – 0.90 2.32 – 1.49 — <0.001
Visuospatial abilities 1.75 – 0.99 3.16 – 0.93 — <0.001

Executive functions 1.35 – 1.28 3.37 – 0.58 — <0.001
Attention, concentration, and working memory 4.35 – 1.49 5.58 – 0.67 — <0.001
Language 4.30 – 1.23 5.58 – 0.67 — <0.001
Spatiotemporal orientation 5.85 – 0.36 5.89 – 0.45 — NS

BDI 5.00 – 5.23 5.37 – 6.87 — NS
Apathy 30.25 – 7.14 29.79 – 6.32 — NS
LEDD total 309.50 – 159.95 269.21 – 136.56 — NS
LEDD DA 67.00 – 145.64 90.26 – 103.50 — NS

Data are expressed as mean – SD. Age was statistically significant different only between PD-CI and PD-NC, with a p = 0.04.
BDI, Beck Depression Index; DA, dopamine-agonist; HS, healthy subjects; H&Y, Hoehn & Yahr; LEDD, Levodopa equivalent daily

dose; MoCA, Montreal Cognitive Assessment; NS*, not significant among the three groups; NS, not significant between PD-CI and PD-
NC; PD-CI, Parkinson’s disease patients with cognitive impairment; PD-NC, Parkinson’s disease patients without cognitive impairment;
SD, standard deviation; UPDRS, Unified Parkinson’s Disease Rating Scale.
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To reconstruct the position of the head in the helmet dur-
ing the MEG, we digitalized, before acquisition, the position
of four reference coils (attached to the head of the subject)
and four anatomical landmarks (nasion, right, and left pre-
auricular and apex) using Fastrak (Polhemus�). The coils
were activated before each segment of the registration. Dur-
ing the MEG acquisition, electrocardiographic (ECG) and
electrooculographic (EOG) signals were also recorded to
remove physiological artefact (Gross et al., 2013; Rucco
et al., 2019). After an anti-aliasing filter, the data were sam-
pled at 1024 Hz.

Preprocessing

The MEG data were filtered in the band 0.5–48 Hz by
using a fourth-order Butterworth IIR band-pass filter, imple-
mented offline by using Matlab scripts within the Fieldtrip
toolbox (Oostenveld et al., 2011). To reduce the environmen-
tal noise, Principal Component Analysis was used (de Che-
veigné and Simon, 2007; Sadasivan, 1996).

Subsequently, an experienced rater identified the noisy
channel/segments of acquisition through visual inspection.
On average, 140 – 4 channels were used. The selected chan-
nels were shown to be able to reconstruct the anatomical
sources, by means of the beamforming algorithm employed
(see Source reconstruction section), without any appreciable
loss of the reconstruction quality. After that, Independent
Component Analysis (Barbati et al., 2004) was performed
to identify and remove ECG (typically 1–2 two components)
and EOG (0–1 components) signals from the MEG data.

Source reconstruction

The subject’s anatomical landmarks were visually identi-
fied on the native MRI of the subjects and used to co-register
the MEG acquisition, which was then spatially normalized to
a template MRI.

Subsequently, the time series related to the centroids of
116 regions-of-interest (ROIs), derived by the Automated
Anatomical Labeling (AAL) atlas (Gong et al., 2009;
Tzourio-Mazoyer et al., 2002) were reconstructed based on
Nolte’s volume conduction model (Nolte, 2003) and the Lin-
early Constrained Minimum Variance (LCMV) beamformer
algorithm (Van Veen et al., 1997). However, we considered
only the first 90 ROIs, excluding those representing the cer-
ebellum, given the low reliability of the reconstructed signal
in those areas. For each ROI, we projected the time series
along the dipole direction, which explained most variance
by means of singular value decomposition, using Fieldtrip
toolbox (Oostenveld et al., 2011).

The beamformer estimates the temporal series represent-
ing the activity of the brain regions. Such signals are filtered
in the five canonical frequency bands (delta [0.5–4 Hz], theta
[4.0–8.0 Hz], alpha [8.0–13.0 Hz], beta [13.0–30.0 Hz], and
gamma [30.0–48.0 Hz]), and they are analyzed separately.

Connectivity analysis

To evaluate the synchronization between brain regions, we
adopted the PLM (Baselice et al., 2019). This novel, undi-
rected metric, developed by our group, measures the synchro-
nization between brain regions, exploiting the power spectrum
of their phase differences in time. It is defined as follows:

PLM =

Ð B

�B

Ð T

0
eiDØ tð Þe� i2p f tdt

�
�
�

�
�
�2 df

Ð1
�1

Ð T

0
eiDØ tð Þe� i2p f tdt

�
�
�

�
�
�2 df

, (1)

where the DØ tð Þ represents the phase difference between two
signals, 2B is the integration band, f is the frequency, and T is
the observation time interval. The PLM ranges between 0
and 1, where 1 indicates perfect synchronization and 0 indi-
cates non-synchronous activity.

Based on PLM, we obtained a 90 · 90 weighted adjacency
matrix for each temporal series (with a duration >4 sec), for
each subject, in each frequency band.

Starting from these weighted adjacency matrices, we cal-
culated, for each ROI, the nodal PLM for each ROI as the av-
erage PLM between a specific ROI and all other ROIs, and
the global PLM as the average of all nodal PLM values. It
is important to note that the PLM value represents the
mean connectivity measure of a node, and it is not a graph
theoretical metric.

Network analysis

Starting from the weighted adjacency matrices, we recon-
structed, based on the MST algorithm, a binary network,
where the 90 areas of the AAL atlas are the nodes and the
entries represent the edges.

Although several approaches have been proposed in the
literature (Fallani et al., 2017), we have chosen the MST al-
gorithm because it allows for an unbiased comparison of the
topology of the networks (Tewarie et al., 2015), building a
single subgraph that connects all the nodes without forming
loops. It allows to calculate statistically comparable metrics,
while maintaining most of the information of the original
network (Tewarie et al., 2015).

To describe the network, we computed nodal centrality
measures (degree, betweenness centrality [BC]) and global,
non-centrality (leaf fraction [Lf], degree divergence, diame-
ter, tree hierarchy [Th]) metrics (Stam et al., 2014; Tewarie
et al., 2015). The degree of a node is defined as the number of
links incident on a given node. The BC is the number of
shortest paths passing through a given node over all the
shortest paths of the network (Freeman, 1977). The Lf is
the fraction of leaf nodes in the MST, where a leaf node is
defined as a node with degree one (Boersma et al., 2013).
The degree divergence (K) measures the broadness of the de-
gree distribution (Tewarie et al., 2015). The diameter is de-
fined as the longest shortest path of the MST. Lastly, the
Th is the number of leaves over the maximum BC.

Statistical analysis

To test differences in age and sex among the three groups,
we use analysis of variance (ANOVA) and the Chi-square,
respectively, after checking the normal distribution of vari-
ables. Clinical parameters, between PD-CI and PD-NC pa-
tients, were compared by using t-test.

The three groups were compared for each variable of
interest (connectivity and topological metrics) by using the
permutational analysis of variance (PERMANOVA), a non-
parametric test to evaluate the effect of cognitive impairment
on brain connectivity, in PD-CI, PD-NC patients and in
controls. Then, all the p-values were corrected by using the
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false discovery rate (FDR) (Benjamini and Hochberg, 1995),
so as to account for multiple comparisons between the vari-
ables. For the significant p-values (after FDR correction),
post hoc analysis was carried out, using Scheffe’s correction
for multiple comparisons among groups.

To correlate the connectivity and topological metrics with
the clinical scales, we used the Spearman’s rank correlation
coefficient. Further, to investigate the possible presence of a
connectome or a topological networks-based model to pre-
dict the cognitive state of the patients (Amico and Goñi,
2018; Shen et al., 2017), we performed a multivariate regres-
sion analysis.

All statistical analyses were performed by using custom
scripts written in Matlab version 2018a. The significance
level was set at p < 0.05.

Results

Population characteristics

The studied population consists of 20 PD-CI, 19 PD-NC
patients and 20 HS. The gender among the three groups
showed no significant difference. The PD-NC patients were
slightly younger than PD-CI patients ( p = 0.04), whereas
no differences were found in terms of disease duration, dis-
ease stage (i.e., H&Y stage), motor impairment (i.e.,
UPDRS III), depression (i.e., BDI scale), and apathy (i.e.,
AES) between the two PD subgroups. As expected, signifi-
cant differences were found in terms of MoCA scale and
its subtests between PD-CI and PD-NC patients (Table 1).

MEG data

Connectivity analysis. Regarding the global PLM value,
we found a statistically significant difference in the gamma
band among the groups with a p = 0.0416 [H (2,58) = 3.365],
with post hoc analysis showing that PD-CI patients differed
from HS, having lower global PLM (Fig. 1).

When we compared the nodal PLM values among the
three groups, we found differences in the gamma band in the
following areas of the left hemisphere: postcentral gyrus
[H (2,58) = 6.578, p = 0.002, pFDR = 0.039], lingual gy-
rus [H (2,58) = 7.563, p = 0.001, pFDR = 0.039], fusiform
gyrus [H (2,58) = 9.279, p < 0.001, pFDR = 0.036], Heschl’s
gyrus [H (2,58) = 6.985, p = 0.002, pFDR = 0.039], and infe-
rior temporal gyrus [H (2,58) = 7.377, p = 0.001, pFDR =
0.039]. In the post hoc analysis, PD-CI patients showed a
lower PLM value with respect to HS in all significant ROI,
whereas PD-NC patients only reached statistical significance
in the left lingual and the left fusiform areas, as shown in
Figure 2.

Topological network analysis. We found topological dif-
ferences in the brain networks among PD-CI, PD-NC, and
HS, in different frequency bands. With respect to Lf, differ-
ences appeared in the delta [H (2,58) = 4.732, p = 0.012,
pFDR = 0.049], the alpha [H (2,58) = 4.371, p = 0.017,
pFDR = 0.028], and the gamma band [H (2,58) = 7.052,
p = 0.002, pFDR = 0.012]. Post hoc analysis showed that, in
all the three bands, PD-CI patients had higher Lf as com-
pared with HS, as depicted in Figure 3.

The Th differed among the three groups in the alpha [H
(2,58) = 5.329, p = 0.006, pFDR = 0.016] and the gamma

band [H (2,58) = 5.523, p = 0.007, pFDR = 0.019]. In the
post hoc analysis, both PD-CI and PD-NC patients differed
from HS with a higher Th in the alpha band, but only PD-
CI patients differed from the HS in the gamma band, as
reported in Figure 4.

The diameter was statistically different in the delta band
[H (2,58) = 4.214, p = 0.019, pFDR = 0.049] among the
three groups, and in particular between PD-CI patients and
HS (Fig. 5).

However, it is to be noted that, although most of the pa-
rameters in the PD-NC group did not reach statistical signif-
icance, a trend seems evident nonetheless, such that
cognitively unimpaired patients show intermediate values
between healthy controls and cognitively compromised pa-
tients. No statistically significant difference was found
among the three groups in the K, the other global topological
parameters calculated, and in the centrality parameters, in
beta and theta bands (Azarpaikan et al., 2014).

Correlations and multivariate regression analysis. As
shown in Figure 6, we found a statistically significant corre-
lation between the MoCA total score and both the diameter
in delta band (R = 0.352, p = 0.028) and the Th in the alpha
band (R =�0.374, p = 0.019). No other statistically signifi-
cant correlation between connectivity metrics and clinical
scales was found.

FIG. 1. Differences in the global PLM value among PD-
CI, PD-NC, and HS. The box plots refer to differences in
the global PLM value in gamma band among PD-CI, PD-
NC and HS. The upper and lower bound of the box refer to
the 25th to 75th percentiles, the median value is represented
by the horizontal line inside each box, the whiskers extend to
the 10th and 90th percentiles, and further data are considered
as outliers and represented by the symbol +. The PD-CI
group shows a lower global PLM value as compared with
both PD-NC group (without reaching statistical significance)
and HS (*p < 0.05). HS, healthy subjects; PLM, phase linear-
ity measurement; PD-CI, Parkinson’s disease patients with
cognitive impairment; PD-NC, Parkinson’s disease patients
without cognitive impairment. Color images are available
online.
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FIG. 2. Differences in the nodal PLM values among PD-CI, PD-NC, and HS. The box plots refer to differences in the nodal
PLM value in gamma band among PD-CI, PD-NC, and HS. The upper and lower bound of the box refer to the 25th to 75th
percentiles, the median value is represented by the horizontal line inside each box, the whiskers extend to the 10th and 90th
percentiles, and further data are considered as outliers and represented by the symbol +. The PD-CI group shows lower nodal
PLM values in fusiform gyrus, Heschl’s gyrus, inferior temporal gyrus, post-central gyrus, and lingual gyrus, on the left, as
compared with both PD-NC group and HS. *p < 0.05, **p < 0.01, ***p < 0.001. Color images are available online.

FIG. 3. Differences in leaf fraction parameter, among PD-CI, PD-NC, and HS. The box plots refer to differences in the Lf
among, respectively, PD-CI, PD-NC, and HS. The upper and lower bound of the box refer to the 25th to 75th percentiles, the
median value is represented by the horizontal line inside each box, the whiskers extend to the 10th and 90th percentiles, and
further data are considered as outliers and represented by the symbol +. The PD-CI group shows a higher Lf, compared with
both PD-NC group and HS, in delta, alpha, and gamma band. *p < 0.05, **p < 0.01. Color images are available online.
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In addition, as reported in Table 2, when we performed a
multivariate regression analysis, we found that only the Th in
the alpha band can predict the MoCA scores, with a
p-value = 0.005, R2 = 0.214, and B =�21.873.

Discussion

Our study was designed to test the hypothesis that the
cognitive decline observed in PD patients may be associ-
ated to specific changes of both functional connectivity
and brain topology. Further, we hypothesized that the ex-
tent of brain network alterations may be correlated with
the cognitive outcome. By applying the PLM, a connectiv-
ity metric that measures the synchronization between brain
regions (Baselice et al., 2019) to MEG signals, we were
able to highlight differences in the global and nodal PLM
values in PD-CI as compared with both PD-NC and HS.
Further, using graph analysis, we found specific PD-related
changes in brain network topology that were related to cog-
nitive functioning.

Functional connectivity. We found that the global PLM
value in the gamma band was significantly reduced in PD-
CI patients as compared with HS. This measure, obtained
by averaging over all 90 (one for each ROI) nodal PLM val-
ues, is a measure of global functional connectivity. Interest-
ingly, the global PLM of PD-NC patients was intermediate
between that of HS and PD-CI (although the difference
was not statistically significant).

The nodal PLM values showed a similar trend to that of
the global PLM. For example, the nodal PLM of cognitively
PD-NC patients was intermediate between PD-CI patients

FIG. 4. Differences in Th parameter among PD-CI, PD-NC, and HS. The box plots refer to differences in the Th among,
respectively, PD-CI, PD-NC, and HS. The upper and lower bound of the box refer to the 25th to 75th percentiles, the median
value is represented by the horizontal line inside each box, the whiskers extend to the 10th and 90th percentiles, and further
data are considered as outliers and represented by the symbol +. The PD-CI group shows a higher Th, compared with both
PD-NC group and HS, in the alpha and gamma bands. *p < 0.05, **p < 0.01. Th, tree hierarchy. Color images are available
online.

FIG. 5. Differences in diameter in PD-CI, PD-NC, and HS.
The box plots refer to differences in the D among, respec-
tively, PD-CI, PD-NC, and HS. The upper and lower
bound of the box refer to the 25th to 75th percentiles, the me-
dian value is represented by the horizontal line inside each
box, the whiskers extend to the 10th and 90th percentiles,
and further data are considered as outliers and represented
by the symbol +. The PD-CI group shows a statistically sig-
nificant lower diameter compared with both PD-NC group
and HS, in delta band. *p < 0.05. Color images are available
online.
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and HS in the gamma band. Specifically, a statically signif-
icant reduction of the functional connectivity was observed
in several temporal (fusiform gyrus, Heschl’s gyrus, and in-
ferior temporal gyrus), parietal (postcentral gyrus), and oc-
cipital (lingual gyrus) areas within the left hemisphere, as
compared with HS. Moreover, the PLM of the lingual and fu-
siform left gyri was significantly reduced with respect to the
HS in both PD-CI and PD-NC patients (Fig. 2).

The heterogeneity of the clinical onset, the prognostic
evolution, as well as the response to dopaminergic therapy
suggest the existence of two distinct cognitive syndromes
in PD (although with overlapping elements), namely the
frontostriatal syndrome (Tessitore et al., 2012b) and the pos-
terior cortical syndrome (Baggio et al., 2015; Tremblay et al.,
2013). The former is cognitively characterized mainly by
dysexecutive disorders, and it is strictly related to the dopa-
minergic imbalance (Gotham et al., 1986); however, in the
latter, memory deficit, visuospatial/visuoperceptual distur-
bances, and, more generally, global cognitive decline are fre-
quently observed (Williams-Gray et al., 2009).

Importantly, the posterior cortical syndrome is associated
with a worse cognitive prognosis (Kehagia et al., 2010).

Overall, our results are in line with this view, where the
form presenting the greater risk of developing dementia
(Olde Dubbelink et al., 2014) showed widespread functional
connectivity in temporal, parietal, and occipital regions
(Baggio et al., 2015). Interestingly, cortical areas showing re-
duced synchronization in cognitively impaired PD subjects
(i.e., fusiform gyrus, Heschl’s gyrus, inferior temporal
gyrus, postcentral gyrus, and lingual gyrus) are mainly in-
volved in the posterior cortical syndrome.

Taking into account the clinical evidence suggesting that
damage in such regions leads to severe cognitive impairment
with a high risk of developing dementia, we might speculate
that, if these regions are less integrated with the rest of the
brain, then the cognitive functioning might be impaired.
This is also supported by our correlation analysis, showing
that the less the synchronization between these areas and
the rest of the brain, the worst the cognitive performance.

It is important to note that there was a clear downward
trend between HS and all PD in both global and nodal
PLM values, with the PD-NC group always displaying inter-
mediate values. This observation could suggest that the re-
duction of the functional connectivity in terms of reduced

FIG. 6. Spearman’s rank
correlation coefficient. The
MoCA test correlates posi-
tively with the diameter
(R = 0.352, p = 0.028) and
negatively with the Th
(R = 0.374, p = 0.019). Color
images are available online.

Table 2. Results of the Multivariate Regression Analysis

Frequency band Parameter B R2 p

Delta Diameter 1.189 0.129 0.058
Leaf fraction �5.883 0.668

Alpha Leaf fraction 28.516 0.214 0.144
Tree hierarchy �21.873 0.005

Gamma Leaf fraction 2.170 0.023 0.920
Tree hierarchy �5.906 0.538
Global PLM �418.757 0.195 0.063
Nodal PLM of left post-central gyrus 138.701 0.168
Nodal PLM of left lingual gyrus 18.806 0.879
Nodal PLM of left fusiform gyrus �53.060 0.722
Nodal PLM of left Heschl’s gyrus 152.485 0.258
Nodal PLM of left inferior temporal gyrus 210.021 0.159

The bold indicates p < 0.05.
PLM, phase linearity measurement.
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overall synchronization (estimated by the PLM) progresses
till it exceeds a threshold, and the cognitive impairment ac-
quires clinical significance (Sorrentino et al., 2021).

It is even more interesting to observe that the reduction in
synchronization in the posterior regions (along with the cog-
nitive impairment) is not a function of disease progression or
severity, as documented by the comparison of the clinical
scales between the two PD groups. Finally, it is worth noting
that all these results are in the gamma band (30–48 Hz),
which has been related to visual perception, attention, audi-
tory processing, learning, and memory (Hoogenboom et al.,
2006; Kaiser and Lutzenberger, 2005).

Brain network topology. The reduction of functional con-
nectivity in PD patients is linked to changes in the large-scale
functional organization of the brain, as captured by our topo-
logical network results. With regard to the centrality param-
eters (degree and BC), which evaluate the topological
characteristic of each single region, we did not find any sta-
tistically significant difference among the three groups.
However, with regard to the global parameters, expressing
global topological features of the brain network, PD-CI pa-
tients, as compared with HS and PD-NC patients, showed
widespread differences in multi-frequencies bands (delta,
alpha, gamma) in the Lf, Th (both higher in PD-CI), and di-
ameter (lower in PD-CI) (Figs. 3–5).

It should be noted that, similarly to the functional connec-
tivity, the PD-NC group shows an intermediate profile be-
tween HS and PD-CI, even when the difference does not
reach statistical significance (Fig. 4).

The Lf is defined as the ratio between the number of leaf
nodes (nodes with degree = 1) and the maximum possible
number of links (total number of nodes minus 1). An Lf
equal to 1 indicates a network with a star-like topology
(Tewarie et al., 2015), where each couple of nodes is topo-
logically closer, and the shortest path passes on a small sub-
set of highly important nodes. On the contrary, an Lf equal to
0 signifies a line-like network, which is less reliant on any
singly node, and hence with higher resiliency to targeted at-
tacks (Rubinov and Sporns, 2010; Tononi et al., 1994).

Related to the Lf, the diameter provides information about
the distance between all pairs of nodes. In fact, lower diam-
eter, as shown by PD patients in the delta band, is indicating
a more compact, star-like network (Boersma et al., 2013).

Finally, the Th quantifies the trade-off between efficient
communication (large-scale integration) and prevention of
the overload of the most important nodes. A higher Th, as
found in PD-CI, may suggest a sub-optimal balance, with re-
spect to both PD-NC (in the alpha band) and HS (in the alpha
and the gamma band), in the sense that, in pathology, the net-
work integration becomes reliant on a small subset of important
areas, hence losing resiliency. This mechanism might underlie
the reduction of functional connectivity found in some brain
areas (Figs. 1 and 2) linked to cognitive deterioration.

Correlation and multivariate regression analysis. Inter-
estingly, as reported in Figure 6, we found a statistically sig-
nificant correlation between the MoCA test and both the
diameter in the delta band (direct correlation) and the Th
in the alpha band (inverse correlation). These correlations
are in line with our findings and support the hypothesis of
reduced synchronization in some brain areas, as well as

hyperconnected network topology, which might capture
sub-optimal large-scale functional organization underpin-
ning cognitive impairment development in PD patients.
This hypothesis is corroborated also by the results of the mul-
tivariate regression analysis, which reinforces the idea that in
PD-CI the cognitive impairment is somewhat related to a
reconfiguration of the brain network.

Conclusion

In conclusion, in this work, we show that in PD patients in
the early phase of the disease, the functional connectivity
changes, as well as the topological rearrangements within
the large-scale functional networks, are correlated to cogni-
tive impairment. In particular, we found reduced functional
connectivity in PD-CI (with respect to both PD-NC and
HS) in terms of reduced overall synchronization, as esti-
mated by the PLM, as well as specifically in the posterior
hubs. Further, analyzing the brain networks, we found a
more star-like topology in PD-CI.

It is noteworthy to observe that both PD groups (i.e., PD-
CI and the PD-NC group) did not differ with regard to the
disease stage as well as to the motor impairment. Nonethe-
less, the group affected by earlier development of cognitive
impairment was the one showing reduced synchronization
in the posterior areas. These data are in line with the hypoth-
esis that two distinct clinical phenotypes (although with
overlapping elements) exist and that involvement of the pos-
terior regions relates to earlier cognitive decline.

Limitations and future directions

Our article shows the relevance of topological analysis of
the brain functional networks to find correlates of the cogni-
tive impairment in PD. However, some limitations should be
highlighted. First, it is important to note that our study relies
on source-reconstructed data. Hence, caution should be used
when interpreting the results of deep sources, which will
have a lower signal-to-noise ratio as compared with cortical
sources.

Further, in this study we used the AAL, which a relative
course-grained atlas. Although this is imposed by the spatial
resolution of the MEG, further studies using modalities with
higher spatial resolution should complement our findings.

Finally, applying the use of topological analysis to find
neurophysiological correlates of cognitive impairment in
neurodegeneration is a promising venue for future investiga-
tion. In fact, it should be investigated whether the alterations
we report in the large-scale brain organization are disease-
specific or they point to more general mechanisms. To this
end, different kinds of neurological diseases as well as spe-
cific kinds of cognitive impairment could be investigated
by using this approach in the future.
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