117 research outputs found

    Will ultrathin CIGS solar cells overtake the champion thin-film cells? Updated SCAPS baseline models reveal main differences between ultrathin and standard CIGS

    Get PDF
    Cu(In,Ga)Se2 (CIGS) solar cells are amongst the best performing thin-film technologies, with the latest performance gains being mainly due to recent years improvements obtained with post-deposition treatments (PDT). Moreover, thinning of the absorber layer down to sub-micrometre values (ultrathin absorbers) is of extreme importance for CIGS to be even more cost-effective and sustainable. However, electrical and optical limitations, such as rear interface recombination and insufficient light absorption, prevent the widespread implementation of ultrathin CIGS devices. The recent electrical CIGS simulation baseline models have failed to keep up with the experimental developments. Here an updated and experimentally based baseline model for electrical simulations in the Solar Cell Capacitor Simulator (SCAPS) software is presented and discussed with the incorporation of the PDT effects and increased optical accuracy with the support from Finite-Difference Time-Domain (FDTD) simulation results. Furthermore, a champion solar cell with an equivalent architecture validates the developed thin-film model. The baseline model is also applied to ultrathin CIGS solar cell devices, validated with the ultrathin champion cell. Ultimately, these ultrathin models pave the way for an ultrathin baseline model. Simulations results reveal that addressing these absorbers' inherent limitations makes it possible to achieve an ultrathin solar cell with at least 21.0% power conversion efficiency, with open-circuit voltage values even higher than the recent thin-film champion cells.This work was supported by the Fundação para a Ciência e Tecno-logia (FCT) grant numbers DFA/BD/7073/2020, DFA/BD/4564/2020, SFRH/BD/146776/2019, IF/00133/2015, UIDB/50025/2020, UIDP/50025/2020, UIDB/04730/2020, and UIDP/04730/2020. The authors want to acknowledge the funding from the project NovaCell (PTDC/ CTM-CTM/28075/2017). The authors also acknowledge the financial support of the project Baterias 2030, with the reference POCI-01-0247-FEDER-046109, co-funded by Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDFinfo:eu-repo/semantics/submittedVersio

    Optical lithography patterning of SiO2 layers for interface passivation of thin film solar cells

    Get PDF
    Ultrathin Cu(In,Ga)Se2 solar cells are a promising way to reduce costs and to increase the electrical performance of thin film solar cells. In this work, we develop an optical lithography process that can produce sub-micrometer contacts in a SiO2 passivation layer at the CIGS rear contact. Furthermore, an optimization of the patterning dimensions reveals constrains over the features sizes. High passivation areas of the rear contact are needed to passivate the CIGS interface so that high performing solar cells can be obtained. However, these dimensions should not be achieved by using long distances between the contacts as they lead to poor electrical performance due to poor carrier extraction. This study expands the choice of passivation materials already known for ultrathin solar cells and its fabrication techniques.publishe

    Black holes and black strings of N=2, d=5 supergravity in the H-FGK formalism

    Get PDF
    We study general classes and properties of extremal and non-extremal static black-hole solutions of N=2, d=5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the black-hole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K_3 \times S^1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.Comment: 33 pages. Revised version: references added. No other change

    Optoelectronic simulations for novel light management concepts in Cu(In,Ga)Se2 solar cells

    Get PDF
    One of the trends making its way through the Photovoltaics (PV) industry, is the search for new application possibilities. Cu(In,Ga)Se2 (CIGS) thin film solar cells stand out due to their class leading power conversion efficiency of 23.35 %, flexibility, and low cost. The use of sub-μm ultrathin CIGS solar cells has been gaining prevalence, due to the reduction in material consumption and the manufacturing time. Precise CIGS finite-difference time-domain (FDTD) and 3D-drift diffusion baseline models were developed for the Lumerical suite and a 1D electrical model for SCAPS, allowing for an accurate description of the optoelectronic behavior and response of thin and ultrathin CIGS solar cells. As a result, it was possible to obtain accurate descriptions of the optoelectronic behavior of thin and ultrathin solar cells, and to perform an optical study and optimization of novel light management approaches, such as, random texturization, photonic nanostructures, plasmonic nanoparticles, among others. The developed light management architectures enabled to push the optical performance of an ultrathin solar cell and even surpass the performance of a thin film solar cell, enabling a short-circuit current enhancement of 6.15 mA/cm2 over an ultrathin reference device, without any light management integrated.publishe

    On the importance of joint mitigation strategies for front, bulk, and rear recombination in ultrathin Cu(In,Ga)Se2 solar cells

    Get PDF
    Several optoelectronic issues, such as poor optical absorption and recombination limit the power conversion efficiency of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. To mitigate recombination losses, two combined strategies were implemented: a Potassium Fluoride (KF) Post-Deposition Treatment (PDT) and a rear interface passivation strategy based on an Aluminium Oxide (Al2O3) point contact structure. The simultaneous implementation of both strategies is reported for the first time on ultrathin CIGS devices. Electrical measurements and 1-D simulations demonstrate that, in specific conditions, devices with only KF-PDT may outperform rear interface passivated based devices. By combining KF-PDT and rear interface passivation, an enhancement in open-circuit voltage of 178 mV is reached over devices that have a rear passivation only and of 85 mV over devices with only a KF-PDT process. Time-Resolved Photoluminescence measurements showed the beneficial effects of combining KF-PDT and the rear interface passivation at decreasing recombination losses in the studied devices, enhancing charge carrier lifetime. X-ray photoelectron spectroscopy measurements indicate the presence of a In and Se rich layer that we linked to be a KInSe2 layer. Our results suggest that when bulk and front interface recombination values are very high, they dominate and individual passivation strategies work poorly. Hence, this work shows that for ultrathin devices, passivation mitigation strategies need to be implemented in tandem.publishe

    On the importance of joint mitigation strategies for front, bulk, and rear recombination in ultrathin Cu(In,Ga)Se2 solar cells

    Get PDF
    Several optoelectronic issues, such as poor optical absorption and recombination limit the power conversion efficiency of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. To mitigate recombination losses, two combined strategies were implemented: a Potassium Fluoride (KF) Post-Deposition Treatment (PDT) and a rear interface passivation strategy based on an Aluminium Oxide (Al2O3) point contact structure. The simultaneous implementation of both strategies is reported for the first time on ultrathin CIGS devices. Electrical measurements and 1-D simulations demonstrate that, in specific conditions, devices with only KF-PDT may outperform rear interface passivated based devices. By combining KF-PDT and rear interface passivation, an enhancement in open-circuit voltage of 178 mV is reached over devices that have a rear passivation only and of 85 mV over devices with only a KF-PDT process. Time-Resolved Photoluminescence measurements showed the beneficial effects of combining KF-PDT and the rear interface passivation at decreasing recombination losses in the studied devices, enhancing charge carrier lifetime. X-ray photoelectron spectroscopy measurements indicate the presence of a In and Se rich layer that we linked to be a KInSe2 layer. Our results suggest that when bulk and front interface recombination values are very high, they dominate and individual passivation strategies work poorly. Hence, this work shows that for ultrathin devices, passivation mitigation strategies need to be implemented in tandem.publishe

    Compilation of parameterized seismogenic sources in Iberia for the SHARE European-scale seismic source model.

    Get PDF
    Abstract: SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded project (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are compiling a fully-parameterized active fault database for Iberia and the nearby offshore region. The principal goal of this initiative is for fault sources in the Iberian region to be represented in SHARE and incorporated into the source model that will be used to produce seismic hazard maps at the European scale. The SHARE project relies heavily on input from many regional experts throughout the Euro-Mediterranean region. At the SHARE regional meeting for Iberia, the 2010 Working Group on Iberian Seismogenic Sources (WGISS) was established; these researchers are contributing to this large effort by providing their data to the Iberian regional integrators in a standardized format. The development of the SHARE Iberian active fault database is occurring in parallel with IBERFAULT, another ongoing effort to compile a database of active faults in the Iberian region. The SHARE Iberian active fault database synthesizes a wide range of geological and geophysical observations on active seismogenic sources, and incorporates existing compilations (e.g., Cabral, 1995; Silva et al., 2008), original data contributed directly from researchers, data compiled from the literature, parameters estimated using empirical and analytical relationships, and, where necessary, parameters derived using expert judgment. The Iberian seismogenic source model derived for SHARE will be the first regional-scale source model for Iberia that includes fault data and follows an internationally standardized approach (Basili et al., 2008; 2009). This model can be used in both seismic hazard and risk analyses and will be appropriate for use in Iberian- and European-scale assessments

    Encapsulation of Nanostructures in a Dielectric Matrix Providing Optical Enhancement in Ultrathin Solar Cells

    Get PDF
    The incorporation of nanostructures in optoelectronic devices for enhancing their optical performance is widely studied. However, several problems related to the processing complexity and the low performance of the nanostructures have hindered such actions in real-life devices. Herein, a novel way of introducing gold nanoparticles in a solar cell structure is proposed in which the nanostructures are encapsulated with a dielectric layer, shielding them from high temperatures and harsh growth processing conditions of the remaining device. Through optical simulations, an enhancement of the effective optical path length of approximately four times the nominal thickness of the absorber layer is verified with the new architecture. Furthermore, the proposed concept in a Cu(In,Ga)Se2 solar cell device is demonstrated, where the short-circuit current density is increased by 17.4%. The novel structure presented in this work is achieved by combining a bottom-up chemical approach of depositing the nanostructures with a top-down photolithographic process, which allows for an electrical contact.This work was funded in part by the Fundação para a Ciência e a Tecnologia (FCT) under Grants IF/00133/2015, PD/BD/142780/2018 and SFRH/BD/ 146776/2019. The authors also want to acknowledge the European Union’s Horizon 2020 Research and Innovation Programme through the ARCIGS-M project under Grant 720887, the Special Research Fund (BOF) of Hasselt University, the FCT through the project NovaCell (PTDC/CTM-CTM/28075/ 2017), and InovSolarCells (PTDC/FISMAC/29696/2017) co-funded by FCT and the ERDF through COMPETE2020. The authors also want to acknowledge Sandra Maya for the production of images used in this work.info:eu-repo/semantics/publishedVersio

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Full text link
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physic
    corecore