15 research outputs found

    Actinomyces in Chronic Granulomatous Disease: An Emerging and Unanticipated Pathogen

    Get PDF
    Background.Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system that causes defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections, mostly by catalase-producing organisms. We report for the first time, to our knowledge, chronic infections with Actinomyces species in 10 patients with CGD. Actinomycosis is a chronic granulomatous condition that commonly manifests as cervicofacial, pulmonary, or abdominal disease, caused by slowly progressive infection with oral and gastrointestinal commensal Actinomyces species. Treatment of actinomycosis is usually simple in immunocompetent individuals, requiring long-term, high-dose intravenous penicillin, but is more complicated in those with CGD because of delayed diagnosis and an increased risk of chronic invasive or debilitating disease. Methods.Actinomyces was identified by culture, staining, 16S ribosomal DNA polymerase chain reaction, and/or a complement fixation test in 10 patients with CGD. Results.All 10 patients presented with a history of fever and elevated inflammatory signs without evident focus. Diagnosis was delayed and clinical course severe and protracted despite high-dose intravenous antibiotic therapy and/or surgery. These results suggest an unrecognized and unanticipated susceptibility to weakly pathogenic Actinomyces species in patients with CGD because these are catalase-negative organisms previously thought to be nonpathogenic in CGD. Conclusions.Actinomycosis should be vigorously sought and promptly treated in patients with CGD presenting with uncommon and prolonged clinical signs of infection. Actinomycosis is a catalase-negative infection important to consider in CG

    Characterization of a Mycobacterium smegmatis Mutant That Is Simultaneously Resistant to d-Cycloserine and Vancomycin

    No full text
    A mutant of Mycobacterium smegmatis has been isolated that is simultaneously resistant to both d-cycloserine (d-CS) and vancomycin. Genetic complementation with a PBP4 homolog restores sensitivity to both drugs. Resistance to d-CS and vancomycin in this mutant is most likely due to a novel mechanism involving peptidoglycan assembly at the cell surface

    Viral minority variants in the core promoter and precore region identified by deep sequencing are associated with response to peginterferon and adefovir in HBeAg negative chronic hepatitis B patients

    No full text
    Background and aim: Precore (PC) and basal core promoter (BCP) mutations are associated with responses to interferon-based treatment in HBeAg-positive chronic hepatitis B (CHB) patients. Here, we identify viral minority variants in these regions and assess association with response to peginterferon-alfa (Peg-IFN) and adefovir combination therapy. Patients and methods: Ultra-deep pyrosequencing analysis of the BCP and PC region was performed for 89 CHB patients (42 HBeAg-positive; 47 HBeAg-negative), at baseline and during treatment. Specifically, associations of individual positions with the HBeAg-negative phenotype were studied, as well as the association of the most prevalent mutations with combined response in HBeAg-positive and negative patients at week 72 (HBeAg negativity, HBV-DNA <2000 IU/mL and ALT normalization at 24 weeks of treatment-free follow-up). Results: The mutations most strongly correlated with the HBeAg-negative phenotype were at positions 1762/1764 and 1896/1899 in the BCP and PC region, respectively. No major changes in nucleotide composition of these positions were observed during treatment. In HBeAg-negative patients, a combined presence of 1764A and 1896A was correlated with lower ALT levels (p = 0.004), whereas the presence of 1899A was correlated with higher age (p = 0.030), lower HBV-DNA level (p = 0.036), and previous IFN therapy (p = 0.032). The presence of 1764A/1896A or the absence of 1899A at baseline, was associated with lower response rates, after adjustment for HBV genotype (p = 0.031 and p = 0.017) and HBsAg level (p = 0.035 and p = 0.022). Conclusion: We identified novel correlations between common BCP and PC variants with response to Peg-IFN and adefovir in HBeAg-negative patients. Ultimately, this may guide the selection of those patients most likely to benefit from Peg-IFN-based treatment. (C) 2017 Elsevier B.V. All rights reserve

    Targeting Hepatitis B Virus-Infected Cells with a T-Cell Receptor-Like Antibody▿ †

    No full text
    Virus-specific CD8 T cells are activated when their T-cell receptors (TCRs) recognize the specific viral peptide/major histocompatibility complex (MHC) class I (pMHC) complexes present on the surface of infected cells. Antibodies able to recognize the specific pMHC can mimic TCR specificity and both represent a valuable biological tool to visualize pMHC complexes on infected cells and serve as a delivery system for highly targeted therapies. To evaluate these possibilities, we created a monoclonal antibody able to specifically recognize a hepatitis B virus (HBV) envelope epitope (Env at positions 183 to 91 [Env183-91]) presented by the HLA-A201 molecule, and we tested its ability to recognize HBV-infected hepatocytes and to deliver a cargo to a specific target. We demonstrate that this antibody detects and visualizes the processed product of HBV proteins produced in naturally HBV-infected cells, is not inhibited by soluble HBV proteins present in patient sera, and mediates the intracellular delivery of a fluorescent molecule to target cells. Additionally, compared to CD8 T cells specific for the same HBV epitope, the TCR-like antibody has both a superior sensitivity and a specificity focused on distinct amino acids within the epitope. These data demonstrate that a T-cell receptor-like antibody can be used to determine the quantitative relationship between HBV replication and specific antigen presentation to CD8 T cells and serves as a novel therapeutic delivery platform for personalized health care for HBV-infected patients

    HBsAg loss in patients treated with peginterferon alfa-2a and adefovir is associated with SLC16A9 gene variation and lower plasma carnitine levels

    No full text
    Achievement of HBsAg loss remains the hallmark of chronic hepatitis B treatment. In order to identify host factors contributing to treatment-induced HBsAg loss, we performed a genome-wide screen of single nucleotide polymorphisms (SNPs) and studied its immunological consequence. Chronic hepatitis B patients (40 HBeAg-positive and 44 HBeAg-negative) treated with peginterferon alfa-2a and adefovir were genotyped for 999,091 SNPs, which were associated with HBsAg loss at week 96 (n = 9). Plasma carnitine levels were measured by tandem-mass spectrometry, and the effect of carnitine on the proliferative capacity of hepatitis B virus (HBV)-specific and non-specific CD8 T cells was studied in vitro. One polymorphism, rs12356193 located in the SLC16A9 gene, was genome-wide significantly associated with HBsAg loss at week 96 (p = 1.84 × 10(-8)). The previously reported association of rs12356193 with lower carnitine levels was confirmed in our cohort, and baseline carnitine levels were lower in patients with HBsAg loss compared to patients with HBsAg persistence (p = 0.02). Furthermore, we demonstrated that carnitine suppressed HBV-specific CD8 T cell proliferation. In chronic hepatitis B patients treated with peginterferon and adefovir, we identified strong associations of SLC16A9 gene variation and carnitine levels with HBsAg loss. Our results further suggest that a lower baseline plasma carnitine level increases the proliferative capacity of CD8 T cells, making patients more susceptible to the immunological effect of this treatment. These novel findings may provide new insight into factors involved in treatment-induced HBsAg loss, and play a role in the prediction of treatment outcom

    Reduction of HBV replication prolongs the early immunological response to IFNα therapy.

    No full text
    BACKGROUND & AIMS: The interaction between HBV replication and immune modulatory effects mediated by IFNα therapy is not well understood. We characterized the impact of HBV DNA replication on the early IFNα-induced immunomodulatory mechanisms. METHODS: We interrogated the transcriptional, serum cytokine/chemokine and cellular immune profiles of 28 patients with HBeAg+ chronic HBV infection (CHB) randomly assigned to one of 4 treatment cohorts (untreated n=5, weekly dosing of 360 μg Pegasys [PegIFNα] n=11, daily dose of 300 mg Viread [tenofovir disoproxil fumarate, TDF] n=6, or a combination of both n=6). Samples were characterized at multiple early time points through day 14 of therapy, after which all patients were given standard of care (180 μg Pegasys injected subcutaneously, weekly). RESULTS: PegIFNα induced a distinct and rapid up-regulation of IFN signaling pathway that coincided with increase detection of distinct serum cytokines/chemokines (IL-15, IL-6, and CXCL-10) and the up-regulation of the frequency of proliferating NK and activated total CD8+ T cells. IFNα treatment alone did not result in rapid decay of HBV replication and was not able to restore the defective HBV-specific T cell response present in CHB patients. In addition, the IFNα immune-stimulatory effects diminished after the first dose, but this refractory effect was reduced in patients where HBV replication was simultaneously inhibited with TDF. CONCLUSIONS: We present here the first comprehensive description of the early effects of IFNα treatment on immune and viral biomarkers in HBeAg+ CHB patients. Our results show that PegIFNα-induced innate immune activation directly benefits from the suppression of HBV replication

    Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production

    No full text
    International audienceDespite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies
    corecore