7 research outputs found

    Complement Split Product C5a Mediates the Lipopolysaccharide‐Induced Mobilization of Cfu‐S and Haemopoietic Progenitor Cells, But Not the Mobilization Induced By Proteolytic Enzymes

    Get PDF
    Abstract. Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU‐s) as well as granulocyte‐macrophage progenitor cells (GM‐CFU) and the early progenitors of the erythroid lineage (E‐BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5‐deficient mice. the mobilization by C activators in these mice could be restored by injection of C5‐sufficient serum, suggesting a critical role for C5. The manner in which C5 was involved in the C activation‐mediated stem cell mobilization was studied using a serum transfer system. C5‐sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5‐sufficient and C5‐deficient mice. C5‐deficient serum was not able to do so. the resistance of the mobilizing principle to heat treatment (56°C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5‐deficient mice also induced mobilization of CFU‐s. Copyrigh
    corecore