104 research outputs found
Asymmetric Dark Matter and the hadronic spectra of hidden QCD
The idea that dark matter may be a composite state of a hidden nonabelian
gauge sector has received great attention in recent years. Frameworks such as
asymmetric dark matter motivate the idea that dark matter may have similar mass
to the proton, while mirror matter and grand unified theories
provide rationales for additional gauge sectors which may have minimal
interactions with standard model particles. In this work we explore the
hadronic spectra that these dark QCD models can allow. The effects of the
number of light colored particles and the value of the confinement scale on the
lightest stable state, the dark matter candidate, are examined in the
hyperspherical constituent quark model for baryonic and mesonic states.Comment: 22 pages, 11 figures. Additional discussion, matches published
versio
SIMULTANEOUS OBSERVATIONS OF GIANT PULSES FROM THE CRAB PULSAR, WITH THE MURCHISON WIDEFIELD ARRAY AND PARKES RADIO TELESCOPE: IMPLICATIONS FOR THE GIANT PULSE EMISSION MECHANISM
We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5Ï and 6.5Ï, respectively. We detected 51% of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of -3.6 > α > -4.9 (S[subscript v] â v[superscript α]). We present a Monte Carlo analysis supporting the conjecture that the giant pulse emission in the Crab is intrinsically broadband, the less than 100% correlation being due to the relative sensitivities of the two instruments and the width of the spectral index distribution. Our observations are consistent with the hypothesis that the spectral index of giant pulses is drawn from normal distribution of standard deviation 0.6, but with a mean that displays an evolution with frequency from â3.00 at 1382 MHz, to â2.85 at 192 MHz
Realisation of a low frequency SKA Precursor: The Murchison Widefield Array
The Murchison Widefield Array is a low frequency (80-300 MHz) SKA Precursor, comprising 128 aperture array elements distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper will focus on a brief discussion of the as-built MWA system, highlighting several novel characteristics of the instrument, and a brief progress report (as of June 2012) on the final construction phase. Practical completion of the MWA is expected in November 2012, with commissioning commencing from approximately August 2012 and operations commencing near mid 2013. A brief description of recent science results from the MWA prototype instrument is given
Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array
Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of âŒ700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin[superscript â2]. The radio lobes have one of the steepest spectral indices yet observed: α = â2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1âperâcent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 Ă 10[superscript â7] Mpc[superscript â3] and argue that normal AGN cannot spend more than 6âperâcent of their lifetime in this phase if they all go through the same cycle
LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY
A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc
The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array
We present new wide-field observations of Centaurus A (Cen A) and the surrounding region at 118âMHz with the Murchison Widefield Array (MWA) 32-tile prototype, with which we investigate the spectral-index distribution of Cen A's giant radio lobes. We compare our images to 1.4âGHz maps of Cen A and compute spectral indices using temperatureâtemperature plots and spectral tomography. We find that the morphologies at 118âMHz and 1.4âGHz match very closely apart from an extra peak in the southern lobe at 118âMHz, which provides tentative evidence for the existence of a southern counterpart to the northern middle lobe of Cen A. Our spatially averaged spectral indices for both the northern and southern lobes are consistent with previous analyses, however we find significant spatial variation of the spectra across the extent of each lobe. Both the spectral-index distribution and the morphology at low radio frequencies support a scenario of multiple outbursts of activity from the central engine. Our results are consistent with inverse-Compton modelling of radio and gamma-ray data that support a value for the lobe age of between 10 and 80âMyr.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant PHY-0835713)National Science Foundation (U.S.) (Grant CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0908884)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc
The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80â300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.National Science Foundation (U.S.) (Grant AST CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc
The Murchison Widefield Array
It is shown that the excellent Murchison Radio-astronomy Observatory site
allows the Murchison Widefield Array to employ a simple RFI blanking scheme and
still calibrate visibilities and form images in the FM radio band. The
techniques described are running autonomously in our calibration and imaging
software, which is currently being used to process an FM-band survey of the
entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016].
6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI
Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
BLAST: the Redshift Survey
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently
surveyed ~8.7 deg^2 centered on GOODS-South at 250, 350, and 500 microns. In
Dye et al. (2009) we presented the catalogue of sources detected at 5-sigma in
at least one band in this field and the probable counterparts to these sources
in other wavebands. In this paper, we present the results of a redshift survey
in which we succeeded in measuring redshifts for 82 of these counterparts. The
spectra show that the BLAST counterparts are mostly star-forming galaxies but
not extreme ones when compared to those found in the Sloan Digital Sky Survey.
Roughly one quarter of the BLAST counterparts contain an active nucleus. We
have used the spectroscopic redshifts to carry out a test of the ability of
photometric redshift methods to estimate the redshifts of dusty galaxies,
showing that the standard methods work well even when a galaxy contains a large
amount of dust. We have also investigated the cases where there are two
possible counterparts to the BLAST source, finding that in at least half of
these there is evidence that the two galaxies are physically associated, either
because they are interacting or because they are in the same large-scale
structure. Finally, we have made the first direct measurements of the
luminosity function in the three BLAST bands. We find strong evolution out to
z=1, in the sense that there is a large increase in the space-density of the
most luminous galaxies. We have also investigated the evolution of the
dust-mass function, finding similar strong evolution in the space-density of
the galaxies with the largest dust masses, showing that the luminosity
evolution seen in many wavebands is associated with an increase in the
reservoir of interstellar matter in galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps and
associated results are available at http://blastexperiment.info
- âŠ