26 research outputs found
Sources and Sinks of Microplastics in Canadian Lake Ontario Nearshore, Tributary and Beach Sediments
Microplastics contamination of Lake Ontario sediments is investigated with the aim of identifying distribution patterns and hotspots in nearshore, tributary and beach depositional environments. Microplastics are concentrated in nearshore sediments in the vicinity of urban and industrial regions. InHumber Bay and Toronto Harbour microplastic concentrations were consistently greater than 500 particles per kg dry sediment. Maximum concentrations of ~28,000 particles per kg dry sediment were determined in Etobicoke Creek. The microplastic particles were primarily fibres and fragments less than 2 mm in size. Both low- and high-density plastics were identified using Raman spectroscopy. We provide a baseline for future monitoring and discuss potential sources of microplastics in terms of how and where to implement preventative measures to reduce the contaminant influx. Although the impacts of microplastics contamination on ecosystem health and functioning is uncertain, understanding, monitoring and preventing further microplastics contamination in Lake Ontario and the other Great Lakes is crucial
Climatic Cycles Recorded in Glacially Influenced Rhythmites of the Gowganda Formation, Huronian Supergroup
The Gowganda Formation of the 2.45–2.2 Ga Huronian Supergroup contains glacially-induced, varve-like rhythmites that potentially preserve a detailed record of climatic conditions during the Paleoproterozoic Era. Four rhythmic couplet thickness records were measured at two outcrops near Wharncliffe, Ontario for the purpose of time-series analysis. The couplets, which range from 1 to 32 mm thick, are composed of alternating layers of siltstone and claystone. Time-series analysis of the couplet thickness records using the MTM Toolkit of Mann and Lees (1996) consistently revealed periodicities in the range of 2.2–2.9 couplets per cycle, which is consistent with climatic cycles such as the quasi-biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO) observed in modern times. This periodicity suggests that the rhythmic couplets represent annual deposits (i.e. varves). Evidence for the presence of cycles at 3.0– 4.9 couplets, 6.6–6.9 couplets, 8.8–9.2 couplets, 22.8 couplets, and 30.1–31.0 couplets were also observed in some couplet thickness records; however, the presence of these longer term cycles was inconsistent from site to site
Tree-ring Isotopes Adjacent to Lake Superior Reveal Cold Winter Anomalies for the Great Lakes Region of North America
Tree-ring carbon isotope discrimination (Δ13C) and oxygen isotopes (δ18O) collected from white pine (Pinus strobus) trees adjacent to Lake Superior show potential to produce the first winter-specific paleoclimate reconstruction with inter-annual resolution for this region. Isotopic signatures from 1976 to 2015 were strongly linked to antecedent winter minimum temperatures (Tmin), Lake Superior peak ice cover, and regional to continental-scale atmospheric winter pressure variability including the North American Dipole. The immense thermal inertia of Lake Superior underlies the unique connection between winter conditions and tree-ring Δ13C and δ18O signals from the following growing season in trees located near the lake. By combining these signals, we demonstrate feasibility to reconstruct variability in Tmin, ice cover, and continental-scale atmospheric circulation patterns (r ≥ 0.65, P \u3c 0.001)
Probing the hydrothermal system of the Chicxulub impact crater
The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth’s crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 105 km3 of Earth’s crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 106 years
Evidence of Latitudinal Migration in Tri-colored Bats, Perimyotis subflavus
Background: Annual movements of tri-colored bats (Perimyotis subflavus) are poorly understood. While this species has been considered a regional migrant, some evidence suggests that it may undertake annual latitudinal migrations, similar to other long distance North American migratory bat species. Methodology/Principal Findings: We investigated migration in P. subflavus by conducting stable hydrogen isotope analyses of 184 museum specimen fur samples and comparing these results (dDfur) to published interpolated dD values of collection site growing season precipitation (dDprecip). Results suggest that the male molt period occurred between June 23 and October 16 and 33 % of males collected during the presumed non-molt period were south of their location of fur growth. For the same time period, 16 % of females were south of their location of fur growth and in general, had not travelled as far as migratory males. There were strong correlations between dDfur from the presumed molt period and both growing season dD precip (males – r 2 = 0.86; p,0.01; females – r 2 = 0.75; p,0.01), and latitude of collection (males – r 2 = 0.85; p,0.01; females – r 2 = 0.73; p,0.01). Most migrants were collected at the northern (.40uN; males and females) and southern (,35uN; males only) extents of the species ’ range. Conclusions/Significance: These results indicate a different pattern of migration for this species than previously documented, suggesting that some P. subflavus engage in annual latitudinal migrations and that migratory tendency varie
Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies
We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region
Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)
Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material
Investigating intra-bone isotopic variations in bioapatite using IR-laser ablation and micromilling: Implications for identifying diagenesis?
The potential of in situ microsampling (micromilling and IR-laser ablation) to detect intra-sample isotopic variation resulting from diagenesis and/or natural remodeling of bone was examined in this study. Modern sheep bones were exposed to microbial populations to induce diagenesis and the δC and δO values of bioapatite structural carbonate and phosphate were determined for these samples and for diagenetically modified archaeological samples from three different environments. No significant differences were found between the δC or δO values of microbially colonized and uncolonized areas on the modern bone surfaces, or between well-preserved and poorly preserved regions of the archaeological material. However, high degree of intra-sample variation was observed in δ-values obtained using IR-laser ablation, some of which arose from methodological challenges associated with this method. Further, δC values obtained using IR-laser ablation were lower than those acquired by conventional analysis, likely because of contamination from organic matter in the samples. Isotopic compositions of structural carbonate samples obtained by micromilling were less variable. For both methods, however, significant differences in δC and δO values were observed for different bone surfaces. These variations may indicate differences in the isotopic compositions of food and water incorporated into osteons over a lifetime, and illustrate the relationship between bone remodelling and isotopic heterogeneity in bone. Overall, our results highlight the difficulties of using the IR-laser ablation method for measuring isotopic compositions of bone