871 research outputs found

    Ks-band (2.14 micron) imaging of southern massive star formation regions traced by methanol masers

    Full text link
    We present deep, wide-field, Ks-band (2.14 micron) images towards 87 southern massive star formation regions traced by methanol maser emission. Using point-spread function fitting, we generate 2.14 micron point source catalogues towards each of the regions. For the regions between 10 degrees and 350 degrees galactic longitude and galactic latitude +/- 1 degree, we match the 2.14 micron sources with the GLIMPSE point source catalogue to generate a combined 2.14 to 8.0 micron point source catalogue. We provide this data for the astronomical community to utilise in studies of the stellar content of embedded clusters.Comment: Accepted PASA. Full version including figures available from http://www.cfa.harvard.edu/~slongmor/snl_iris2_withfigs.pd

    New ammonia masers towards NGC6334I

    Full text link
    We report the detection of new ammonia masers in the non-metastable (8,6) and (11,9) transitions towards the massive star forming region NGC6334I. Observations were made with the ATCA interferometer and the emitting region appears unresolved in the 2.7" x 0.8" beam, with deconvolved sizes less than an arcsecond. We estimate peak brightness temperatures of 7.8 x 10^5 and 1.2 x 10^5 K for the (8,6) and (11,9) transitions, respectively. The masers appear coincident both spatially and in velocity with a previously detected ammonia (6,6) maser. We also suggest that emission in the (10,9), (9,9) and (7,6) transitions may also be masers, based on their narrow line widths and overlapping velocity ranges with the above masers, as observed with the single-dish Mopra radiotelescope

    Physical characterisation of southern massive star-forming regions using Parkes NH3_3 observations

    Full text link
    We have undertaken a Parkes ammonia spectral line study, in the lowest two inversion transitions, of southern massive star formation regions, including young massive candidate protostars, with the aim of characterising the earliest stages of massive star formation. 138 sources from the submillimetre continuum emission studies of Hill et al., were found to have robust (1,1) detections, including two sources with two velocity components, and 102 in the (2,2) transition. We determine the ammonia line properties of the sources: linewidth, flux density, kinetic temperature, NH3_3 column density and opacity, and revisit our SED modelling procedure to derive the mass for 52 of the sources. By combining the continuum emission information with ammonia observations we substantially constrain the physical properties of the high-mass clumps. There is clear complementarity between ammonia and continuum observations for derivations of physical parameters. The MM-only class, identified in the continuum studies of Hill et al., display smaller sizes, mass and velocity dispersion and/or turbulence than star-forming clumps, suggesting a quiescent prestellar stage and/or the formation of less massive stars.Comment: 20 pages, 9 Figures, 1 appendix (to appear in full online only, a sample appendix in the paper); 7 tables. Accepted by MNRA

    Hot high-mass accretion disk candidates

    Full text link
    To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a 12 high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in NH3, directly associated with CH3OH Class II maser emission. From the remaining eleven sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact HII regions, to more spherical infall signatures in emission. Although our spatial resolution is ~1000AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10^4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks -- if they exist as expected -- should be confined to regions usually smaller than 1000AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25cm continuum emission in most fields of view.Comment: 21 pages, 32 figures, accepted for ApJS. A high-resolution version can be found at http://www.mpia.de/homes/beuther/papers.htm

    The molecular environment of massive star forming cores associated with Class II methanol maser emission

    Full text link
    Methanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding

    Star and Stellar Cluster Formation: ALMA-SKA Synergies

    Get PDF
    © 2015 The Author(s). This work is made available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license https://creativecommons.org/licenses/by-nc-sa/3.0/.Over the next decade, observations conducted with ALMA and the SKA will reveal the process of mass assembly and accretion onto young stars and will be revolutionary for studies of star formation. Here we summarise the capabilities of ALMA and discuss recent results from its early science observations. We then review infrared and radio variability observations of both young low-mass and high-mass stars. A time domain SKA radio continuum survey of star forming regions is then outlined. This survey will produce radio light-curves for hundreds of young sources, providing for the first time a systematic survey of radio variability across the full range of stellar masses. These light-curves will probe the magnetospheric interactions of young binary systems, the origins of outflows, trace episodic accretion on the central sources and potentially constrain the rotation rates of embedded sources
    • …
    corecore