21,514 research outputs found

    Quasi-Rip: A New Type of Rip Model without Cosmic Doomsday

    Full text link
    The fate of our universe is an unceasing topic of cosmology and the human being. The discovery of the current accelerated expansion of the universe significantly changed our view of the fate of the universe. Recently, some interesting scenarios concerning the fate of the universe attracted much attention in the community, namely the so-called "Little Rip" and "Pseudo-Rip". It is worth noting that all the Big Rip, Little Rip and Pseudo-Rip arise from the assumption that the dark energy density ρ(a)\rho(a) is monotonically increasing. In the present work, we are interested to investigate what will happen if this assumption is broken, and then propose a so-called "Quasi-Rip" scenario, which is driven by a type of quintom dark energy. In this work, we consider an explicit model of Quasi-Rip in detail. We show that Quasi-Rip has an unique feature different from Big Rip, Little Rip and Pseudo-Rip. Our universe has a chance to be rebuilt from the ashes after the terrible rip. This might be the last hope in the "hopeless" rip.Comment: 9 pages, 2 figures, 1 table, revtex4; v2: discussions added, Phys. Rev. D in press; v3: published versio

    Made-to-measure galaxy models - III Modelling with Milky Way observations

    Full text link
    We demonstrate how the Syer & Tremaine made-to-measure method of stellar dynamical modelling can be adapted to model a rotating galactic bar. We validate our made-to-measure changes using observations constructed from the existing Shen et al. (2010) N-body model of the Milky Way bar, together with kinematic observations of the Milky Way bulge and bar taken by the Bulge Radial Velocity Assay (BRAVA). Our results for a combined determination of the bar angle and bar pattern speed (~30 degrees and ~40 km/s/kpc) are consistent with those determined by the N-body model. Whilst the made-to-measure techniques we have developed are applied using a particular N-body model and observational data set, they are in fact general and could be applied to other Milky Way modelling scenarios utilising different N-body models and data sets. Additionally, we use the exercise as a vehicle for illustrating how N-body and made-to-measure methods might be combined into a more effective method.Comment: Accepted for publication, 10 pages, 7 figure

    Maximum Estrada Index of Bicyclic Graphs

    Full text link
    Let GG be a simple graph of order nn, let λ1(G),λ2(G),...,λn(G)\lambda_1(G),\lambda_2(G),...,\lambda_n(G) be the eigenvalues of the adjacency matrix of GG. The Esrada index of GG is defined as EE(G)=∑i=1neλi(G)EE(G)=\sum_{i=1}^{n}e^{\lambda_i(G)}. In this paper we determine the unique graph with maximum Estrada index among bicyclic graphs with fixed order

    Decay constants of the pseudoscalar mesons in the framework of the coupled Schwinger-Dyson equation and Bethe-Salpeter equation

    Full text link
    In this article, we investigate the structures of the pseudoscalar mesons (π\pi, KK, DD, DsD_s, BB and BsB_s) in the framework of the coupled rainbow Schwinger-Dyson equation and ladder Bethe-Salpeter equation with the confining effective potential (infrared modified flat bottom potential). The Schwinger-Dyson functions for the uu, dd and ss quarks are greatly renormalized at small momentum region and the curves are steep at about q2=1GeV2q^2=1GeV^2 which indicates an explicitly dynamical symmetry breaking. The Euclidean time fourier transformed quark propagators have no mass poles in the time-like region which naturally implements confinement. As for the cc and bb quarks, the current masses are very large, the renormalization are more tender, however, mass poles in the time-like region are also absent. The Bethe-Salpeter wavefunctions for those mesons have the same type (Gaussian type) momentum dependence and center around small momentum which indicate that the bound states exist in the infrared region. The decay constants for those pseudoscalar mesons are compatible with the values of experimental extractions and theoretical calculations, such as lattice simulations and QCD sum rules.Comment: 10 pages, 4 figures, Revised Versio

    Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady-state, but by stomatal conductance in fluctuating light

    Get PDF
    Sub‐Saharan Africa is projected to see a 55% increase in food demand by 2035, where cassava (Manihot esculenta) is the most planted crop and a major calorie source. Cassava yield has not increased significantly for 13 years. Improvement of genetic yield potential, the basis of the first Green Revolution, could be increased by improving photosynthetic efficiency. First, the factors limiting photosynthesis and their genetic variability within extant germplasm must be understood. Biochemical and diffusive limitations to leaf photosynthetic CO2 uptake under steady‐state and fluctuating light in thirteen farm‐preferred and high‐yielding African cultivars were analyzed. A cassava leaf metabolic model was developed to quantify the value of overcoming limitations to leaf photosynthesis. At steady‐state, in vivo Rubisco activity and mesophyll conductance accounted for 84% of the limitation whereas under non‐steady‐state conditions of shade to sun transition stomatal conductance was the major limitation contributing resulting in an estimated 13% and 5% losses in CO2 uptake and water use efficiency, across a diurnal period. Triose phosphate utilization, while sufficient to support observed rates, would limit improvement in leaf photosynthesis to 33%, unless improved itself. The variation of carbon assimilation among cultivars were three times greater under non‐steady‐state compared to steady‐state, pinpointing important overlooked breeding targets for improved photosynthetic efficiency in cassava

    Pseudo-supersymmetry, Consistent Sphere Reduction and Killing Spinors for the Bosonic String

    Get PDF
    Certain supergravity theories admit a remarkable consistent dimensional reduction in which the internal space is a sphere. Examples include type IIB supergravity reduced on S^5, and eleven-dimensional supergravity reduced on S^4 or S^7. Consistency means that any solution of the dimensionally-reduced theory lifts to give a solution in the higher dimension. Although supersymmetry seems to play a role in the consistency of these reductions, it cannot be the whole story since consistent sphere reductions of non-supersymmetric theories are also known, such as the reduction of the effective action of the bosonic string in any dimension D on either a 3-sphere or a (D-3)-sphere, retaining the gauge bosons of SO(4) or SO(D-2) respectively. We show that although there is no supersymmetry, there is nevertheless a natural Killing spinor equation for the D-dimensional bosonic string. A projection of the full integrability condition for these Killing spinors gives rise to the bosonic equations of motion (just as happens in the supergravity examples). Thus it appears that by extending the notion of supersymmetry to "pseudo-supersymmetry" in this way, one may be able to obtain a broader understanding of a relation between Killing spinors and consistent sphere reductions.Comment: Latex, 15 page
    • 

    corecore