9 research outputs found

    Active Reconfigurable Intelligent Surface Aided Wireless Communications

    Full text link
    Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. {However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver.} An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget

    Modulation Design and Optimization for RIS-Assisted Symbiotic Radios

    Full text link
    In reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR), the RIS acts as a secondary transmitter by modulating its information bits over the incident primary signal and simultaneously assists the primary transmission, then a cooperative receiver is used to jointly decode the primary and secondary signals. Most existing works of SR focus on using RIS to enhance the reflecting link while ignoring the ambiguity problem for the joint detection caused by the multiplication relationship of the primary and secondary signals. Particularly, in case of a blocked direct link, joint detection will suffer from severe performance loss due to the ambiguity, when using the conventional on-off keying and binary phase shift keying modulation schemes for RIS. To address this issue, we propose a novel modulation scheme for RIS-assisted SR that divides the phase-shift matrix into two components: the symbol-invariant and symbol-varying components, which are used to assist the primary transmission and carry the secondary signal, respectively. To design these two components, we focus on the detection of the composite signal formed by the primary and secondary signals, through which a problem of minimizing the bit error rate (BER) of the composite signal is formulated to improve both the BER performance of the primary and secondary ones. By solving the problem, we derive the closed-form solution of the optimal symbol-invariant and symbol-varying components, which is related to the channel strength ratio of the direct link to the reflecting link. Moreover, theoretical BER performance is analyzed. Finally, simulation results show the superiority of the proposed modulation scheme over its conventional counterpart.Comment: 16 pages,15 figure

    Symbiotic communications: where Marconi meets Darwin

    No full text
    With the proliferation of wireless applications, the electromagnetic (EM) space is becoming more and more crowded and complex. This makes it a challenging task to accommodate the growing number of radio systems with limited radio resources. In this article, by considering the EM space as a radio ecosystem, and leveraging the analogy to the natural ecosystem in biology, a novel symbiotic communication (SC) paradigm is proposed through which the relevant radio systems, called symbiotic radios (SRs), in a radio ecosystem form a symbiotic relationship (e.g., mutualistic symbiosis) through intelligent resource/service exchange. Radio resources include, for example, spectrum, energy, and infrastructure, while typical radio services are communicating, relaying, and computing. The symbiotic relationship can be realized via either symbiotic coevolution or symbiotic synthesis. In symbiotic coevolution, each SR is empowered with an evolutionary cycle alongside the multi-agent learning, while in symbiotic synthesis, the SRs ingeniously optimize their operating parameters and transmission protocols by solving a multi-objective optimization problem. Promisingly, the proposed SC paradigm breaks the boundary of radio systems, thus providing us with a fresh perspective on radio resource management and new guidelines to design future wireless communication systems.This work is supported by the National Natural Science Foundation of China under Grants 61631005 and U1801261; the National Key R & D Program of China under Grant 2018YFB1801105; the Key Areas of Research and Development Program of Guangdong Province, China under Grant 2018B010114001; the Macau Science and Technology Development Fund (FDCT), Macau SAR, under Grant 0009/2020/A1; the Fundamental Research Funds for the Central Universities under Grant ZYGX2019Z022; and the Programme of Introducing Talents of Discipline to Universities under Grant B20064

    Full-Duplex Backscatter Communications in Symbiotic Radio Systems

    No full text
    In this paper, we are interested in a symbiotic radio (SR) system, in which a passive full-duplex backscatter device (BD) is parasitic in an active primary transmission. The primary transmitter (PT) with multiple antennas is designed to broadcast common messages to the primary receiver (PR) and the BD, as well as to support passive information transmission from the BD to the PR. To do so, the full-duplex BD absorbs a fraction of the incident signal from the PT to decode the common messages and simultaneously transmits its own information to the PR by backscattering the remaining part of the incident signal. We derive the achievable rates of the BD transmission with Gaussian and quadrature amplitude modulation codewords. We also formulate a transmit power minimization problem by jointly designing the beamforming vector at the PT and the power splitting factor at the BD. This problem is first solved by the semi-definite relaxation technique together with a one-dimensional linear exhaustive search over the power splitting factor. Then, a suboptimal but low-complexity solution with closed-form expressions is proposed. The simulation results have shown that the proposed suboptimal solution achieves almost the same performance as that obtained by the exhaustive search. In addition, our proposed SR system with the full-duplex BD outperforms the half-duplex system with the time-division-multiplexing mode in general

    Active Reconfigurable Intelligent Surface-Aided Wireless Communications

    No full text
    Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver. An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget.Funding Agencies|National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61631005, U1801261]; National Key Research and Development Program of China [2018YFB1801105]; Key Areas of Research and Development Program of Guangdong Province, China [2018B010114001]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [ZYGX2019Z022]; Programme of Introducing Talents of Discipline to UniversitiesMinistry of Education, China - 111 Project [B20064]</p

    CD71-mediated liposomal arsenic-nickel complex combined with all-trans retinoic acid for the efficacy of acute promyelocytic leukemia

    No full text
    Clinically, arsenic trioxide (ATO) was applied to the treatment of acute promyelocytic leukemia (APL) as a reliable and effective frontline drug. However, the administration regimen of AsⅢ was limited due to its fast clearance, short therapeutic window and toxicity as well. Based on CD71 overexpressed on APL cells, in present study, a transferrin (Tf)-modified liposome (LP) was established firstly to encapsulate AsⅢ in arsenic-nickel complex by nickel acetate gradient method. The AsⅢ-loaded liposomes (AsLP) exhibited the feature of acid-sensitive release in vitro. Tf-modified AsLP (Tf-AsLP) were specifically taken up by APL cells and the acidic intracellular environment triggered liposome to release AsⅢ which stimulated reactive oxygen species level and caspase-3 activity. Tf-AsLP prolonged half-life of AsⅢ in blood circulation, lowered systemic toxicity, and promoted apoptosis and induced cell differentiation at lesion site in vivo. Considering that ATO combined with RA is usually applied as the first choice in clinic for APL treatment to improve the therapeutic effect, accordingly, a Tf-modified RA liposome (Tf-RALP) was designed to reduce the severe side effects of free RA and assist Tf-AsLP for better efficacy. As expected, the tumor inhibition rate of Tf-AsLP was improved significantly with the combination of Tf-RALP on subcutaneous tumor model. Furthermore, APL orthotopic NOD/SCID mice model was established by 60CO irradiation and HL-60 cells intravenously injection. The effect of co-administration (Tf-AsLP + Tf-RALP) was also confirmed to conspicuous decrease the number of leukemia cells in the circulatory system and prolong the survival time of APL mice by promoting the APL cells’ apoptosis and differentiation in peripheral blood and bone marrow. Collectively, Tf-modified acid-sensitive AsLP could greatly reduce the systemic toxicity of free drug. Moreover, Tf-AsLP combined with Tf-RALP could achieve better efficacy. Thus, transferrin-modified AsⅢ liposome would be a novel clinical strategy to improve patient compliance, with promising translation prospects

    Reconfigurable intelligent surfaces for smart wireless environments: channel estimation, system design and applications in 6G networks

    No full text
    International audienceReconfigurable intelligent surface (RIS), one of the key enablers for the sixth-generation (6G) mobile communication networks, is considered by designers to smartly reconfigure the wireless propagation environment in a controllable and programmable manner. Specifically, an RIS consists of a large number of low-cost and passive reflective elements (REs) without radio frequency chains. The system gain of RIS wireless systems can be achieved by adjusting the phase shifts and amplitudes of the REs so that the desired signals can be added constructively at the receiver. However, an RIS typically has limited signal processing capability and cannot perform active transmitting/receiving in general, which leads to new challenges in the physical layer design of RIS wireless systems. In this paper, we provide an overview of the RIS-aided wireless systems, including the reflection principle, channel estimation, and system design. In particular, two types of emerging RIS systems are considered: RIS-aided wireless communications (RAWC) and RIS-based information transmission (RBIT), where the RIS plays the role of the reflector and the transmitter, respectively. We also envision the potential applications of RIS in 6G networks
    corecore