63 research outputs found

    Intrinsic magnetic properties of the layered antiferromagnet CrSBr

    Full text link
    Van der Waals magnetic materials are an ideal platform to study low-dimensional magnetism. Opposed to other members of this family, the magnetic semiconductor CrSBr is highly resistant to degradation in air, which, besides its exceptional optical, electronic, and magnetic properties, is the reason the compound is receiving considerable attention at the moment. For many years, its magnetic phase diagram seemed to be well-understood. Recently, however, several groups observed a magnetic transition in magnetometry measurements at temperatures of around 40 K that is not expected from theoretical considerations, causing a debate about the intrinsic magnetic properties of the material. In this letter, we report the absence of this particular transition in magnetization measurements conducted on high-quality CrSBr crystals, attesting to the extrinsic nature of the low-temperature magnetic phase observed in other works. Our magnetometry results obtained from large bulk crystals are in very good agreement with the magnetic phase diagram of CrSBr previously predicted by the mean-field theory; A-type antiferromagnetic order is the only phase observed below the N\'eel temperature at TN = 131 K. Moreover, numerical fits based on the Curie-Weiss law confirm that strong ferromagnetic correlations are present within individual layers even at temperatures much larger than TN.Comment: 13 pages, submitted to Appl. Phys. Let

    Ferromagnetic interlayer coupling in CrSBr crystals irradiated by ions

    Full text link
    Layered magnetic materials are becoming a major platform for future spin-based applications. Particularly the air-stable van der Waals compound CrSBr is attracting considerable interest due to its prominent magneto-transport and magneto-optical properties. In this work, we observe a transition from antiferromagnetic to ferromagnetic behavior in CrSBr crystals exposed to high-energy, non-magnetic ions. Already at moderate fluences, ion irradiation induces a remanent magnetization with hysteresis adapting to the easy-axis anisotropy of the pristine magnetic order up to a critical temperature of 110 K. Structure analysis of the irradiated crystals in conjunction with density functional theory calculations suggest that the displacement of constituent atoms due to collisions with ions and the formation of interstitials favors ferromagnetic order between the layers

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Characterization of Magnetic and Mineralogical Properties of Slag Particles from WEEE Processing

    No full text
    Magnetic separation has wide-ranging applications in both mineral processing and recycling industries. Nevertheless, its conventional utilization often overlooks the interplay between mineral and particle characteristics and their impact on operational conditions, ultimately influencing the efficacy of the separation process. This work describes a methodology able to achieve the comprehensive characterization and classification of Waste Electrical and Electronic Equipment (WEEE) slag. The primary objective is to establish a meaningful connection between the distinct properties of slag phases and their influence on the separation process. Our methodology consists of several stages. Firstly, the WEEE slag is sieved into distinct size classes, followed by classification into magnetic susceptibility classes by using the Frantz Isodynamic separator. To quantify the magnetic susceptibility of each class, we used a magnetic susceptibility balance, and to identify paramagnetic and ferromagnetic fractions and phases within these magnetic susceptibility classes, we conducted vibrating-sample magnetometer measurements. Finally, to establish a meaningful link between the magnetic characterization, mineralogical, and particle-level details, Mineral Liberation Analysis was conducted for each magnetic susceptibility class. This in-depth analysis, encompassing both particle properties and magnetic susceptibility classes, provides a better understanding of the separation behavior of different phases and can help to enrich phases with a specific range of magnetic susceptibility values. This knowledge advances progress towards the development of predictive separation models that are capable of bridging the gap between theoretical understanding and practical application in the field of magnetic separation

    DNA Methylation Analysis of the SHOX2 and RASSF1A Panel Using Cell-Free DNA in the Diagnosis of Malignant Pleural Effusion

    No full text
    Objectives. The differential diagnosis of pleural effusion (PE) is a common but major challenge in clinical practice. This study aimed to establish a strategy based on a PE-cell-free DNA (cfDNA) methylation detection system for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Methods. A total of 104 patients with PE were enrolled in this study, among which 50 patients had MPE, 9 malignant tumor patients had PE of indefinite causes, and the other 45 patients were classified as benign controls. The methylation status of short stature homeobox 2 (SHOX2) and RAS association domain family 1, isoform A (RASSF1A) was detected using PE-cfDNA specimens by real-time fluorescence quantitative PCR. Total methylation (TM) was defined as the combination of the methylation levels of SHOX2 and RASSF1A. The electrochemiluminescence immunoassay was applied to evaluate the levels of multiple serum tumor markers. Results. The PE-cfDNA methylation status of either SHOX2 or RASSF1A was much higher in MPE samples than in benign controls. The combination of SHOX2 and RASSF1A methylation in PE yielded a diagnostic sensitivity of 96% and a specificity of 100%, respectively. When compared with the corresponding serum tumor marker detection results, TM showed the highest diagnostic efficiency (AUC = 0.985). Furthermore, the combination of the SHOX2 and RASSF1A methylation panels using PE-cfDNA could apparently improve the differential diagnostic efficacy of BPE and MPE and could help compensate for the deficiency of cytology. Conclusions. Our results indicated that SHOX2 and RASSF1A methylation panel detection could accurately classify BPE and MPE diseases and showed better diagnostic performance than traditional serum parameters. The SHOX2 and RASSF1A methylation detection of PE-cfDNA could be a potentially effective complementary tool for cytology in the process of differential diagnosis. In summary, PE-cfDNA could be used as a promising non-invasive analyte for the auxiliary diagnosis of MPE
    corecore