331 research outputs found

    Simulations of organic aerosol with CAMx over the Po Valley during the summer season

    Get PDF
    A new sensitivity analysis with the Comprehensive Air Quality Model with Extensions (CAMx) using a traditional two-product scheme (SOAP) and the newer Volatility Basis Set (VBS) algorithm for organic aerosol (OA) calculations is presented. The sensitivity simulations include the default versions of the SOAP and VBS schemes, as well as new parametrizations for the VBS scheme to calculate emissions and volatility distributions of semi- and intermediate-volatile organic compounds. The focus of the simulations is the summer season (May to July 2013), in order to quantify the sensitivity of the model in a period with relatively large photochemical activity. In addition to the model sensitivity, we validate the results with ad hoc OA measurements obtained from aerosol mass spectrometers at two monitoring sites. Unlike winter cases previously published, the comparison with experimental data showed limited sensitivity to total OA amount, with an estimated increase in OA concentrations limited to a few tenths of µg m−3, for both the primary and secondary components. We show that the lack of pronounced sensitivity is related to the effect of the new parametrizations on different emissions sectors. Furthermore, the minor sensitivity to the new parametrizations could be related to the greater partitioning of OA towards the gaseous phase in the summer period, thus reducing the organic fraction in the aerosol phase

    Defective dystrophic thymus determines degenerative changes in skeletal muscle.

    Get PDF
    In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-β and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance

    Complement activation predicts negative outcomes in COVID-19: The experience from Northen Italian patients

    Get PDF
    Coronavirus disease 19 (COVID-19) may present as a multi-organ disease with a hyperinflammatory and prothrombotic response (immunothrombosis) in addition to upper and lower airway involvement. Previous data showed that complement activation plays a role in immunothrombosis mainly in severe forms. The study aimed to investigate whether complement involvement is present in the early phases of the disease and can be predictive of a negative outcome. We enrolled 97 symptomatic patients with a positive RT-PCR for SARS-CoV-2 presenting to the emergency room. The patients with mild symptoms/lung involvement at CT-scan were discharged and the remaining were hospitalized. All the patients were evaluated after a 4-week follow-up and classified as mild (n. 54), moderate (n. 17) or severe COVID-19 (n. 26). Blood samples collected before starting any anti-inflammatory/immunosuppressive therapy were assessed for soluble C5b-9 (sC5b-9) and C5a plasma levels by ELISA, and for the following serum mediators by ELLA: IL-1β, IL-6, IL-8, TNFα, IL-4, IL-10, IL-12p70, IFNγ, IFNα, VEGF-A, VEGF-B, GM-CSF, IL-2, IL-17A, VEGFR2, BLyS. Additional routine laboratory parameters were measured (fibrin fragment D-dimer, C-reactive protein, ferritin, white blood cells, neutrophils, lymphocytes, monocytes, platelets, prothrombin time, activated partial thromboplastin time, and fibrinogen). Fifty age and sex-matched healthy controls were also evaluated. SC5b-9 and C5a plasma levels were significantly increased in the hospitalized patients (moderate and severe) in comparison with the non-hospitalized mild group. SC5b9 and C5a plasma levels were predictive of the disease severity evaluated one month later. IL-6, IL-8, TNFα, IL-10 and complement split products were higher in moderate/severe versus non-hospitalized mild COVID-19 patients and healthy controls but with a huge heterogeneity. SC5b-9 and C5a plasma levels correlated positively with CRP, ferritin values and the neutrophil/lymphocyte ratio. Complement can be activated in the very early phases of the disease, even in mild non-hospitalized patients. Complement activation can be observed even when pro-inflammatory cytokines are not increased, and predicts a negative outcome

    LIN7 regulates the filopodia and neurite promoting activity of IRSp53

    Get PDF
    The insulin receptor substrate protein of 53\u2005kDa (IRSp53) is critically involved in the formation of filopodia and neurites through mechanisms that have only in part been clarified. Here, we investigated the role of the small scaffold protein LIN7, an interactor of IRSp53. We found that formation of actin-filled protrusions in neuronal NSC34 cells and neurites in neuroblastoma N2A depends on motifs mediating the LIN7:IRSp53 association, as both the coexpression of LIN7 with IRSp53 or the expression of the L27-IRSp53 chimera (a fusion protein between IRSp53 and the LIN7L27 domain for plasma membrane protein complexes association) prevented actin-deficient protrusions induced by overexpressed IRSp53, and enhanced the formation of actin-filled protrusions. The regulatory role of LIN7 in IRSp53-mediated extension of filopodia was demonstrated by live-cell imaging experiments in neuronal N2A cells. Moreover, LIN7 silencing prevented the extension of filopodia and neurites, induced by ectopic expression of IRSp53 or serum starvation, respectively in undifferentiated and differentiated N2A cells. The expression of full length IRSp53 or the LIN7\u394PDZ mutant lacking the domain for association with IRSp53 was unable to restore neuritogenesis in LIN7 silenced cells. Conversely, defective neuritogenesis could be rescued by the expression of RNAi-resistant full length LIN7 or chimeric L27-IRSp53. Finally, LIN7 silencing prevented the recruitment of IRSp53 in Triton X-100 insoluble complexes, otherwise occurring in differentiated cells. Collectively these data indicate that LIN7 is a novel regulator of IRSp53, and that their association is required to promote the formation of actin-dependent filopodia and neurites

    Lipid Reshaping and Lipophagy Are Induced in a Modeled Ischemia-Reperfusion Injury of Blood Brain Barrier

    Get PDF
    Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia

    In Vivo Comparative Study on Acute and Sub-acute Biological Effects Induced by Ultrafine Particles of Different Anthropogenic Sources in BALB/c Mice

    Get PDF
    Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 g UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison

    Proteome Investigation of Rat Lungs subjected to Ex Vivo Perfusion (EVLP)

    Get PDF
    Ex vivo lung perfusion (EVLP) is an emerging procedure that allows organ preservation, assessment and reconditioning, increasing the number of marginal donor lungs for transplantation. However, physiological and airflow measurements are unable to unveil the molecular mechanisms responsible of EVLP beneficial effects on lung graft and monitor the proper course of the treatment. Thus, it is urgent to find specific biomarkers that possess these requirements but also accurate and reliable techniques that identify them. The purpose of this study is to give an overview on the potentiality of shotgun proteomic platforms in characterizing the status and the evolution of metabolic pathways during EVLP in order to find new potential EVLP-related biomarkers. A nanoLC-MS/MS system was applied to the proteome analysis of lung tissues from an optimized rat model in three experimental groups: native, pre- and post-EVLP. Technical and biological repeatability were evaluated and, together with clustering analysis, underlined the good quality of data produced. In-house software and bioinformatics tools allowed the label-free extraction of differentially expressed proteins among the three examined conditions and the network visualization of the pathways mainly involved. These promising findings encourage further proteomic investigations of the molecular mechanisms behind EVLP procedure
    • …
    corecore