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SUMMARY 27 

 28 

The insulin receptor substrate protein of 53 kDa (IRSp53) is critically involved in the formation of 29 

filopodia and neurites through mechanisms that have only in part been clarified. Here, we 30 

investigated the role of the small scaffold protein LIN7, an interactor of IRSp53. We found that 31 

formation of actin-filled protrusions in neuronal NSC34 cells and neurites in neuroblastoma N2A 32 

depends on motifs mediating the LIN7:IRSp53 association, as both the coexpression of LIN7 with 33 

IRSp53 or the expression of the L27-IRSp53 chimera (a fusion protein between IRSp53 and the 34 

LIN7L27 domain for plasma membrane protein complexes association) prevented actin-deficient 35 

protrusions induced by overexpressed IRSp53, and enhanced the formation of actin-filled 36 

protrusions. The regulatory role of LIN7 in IRSp53-mediated extension of filopodia was 37 

demonstrated by live-cell imaging experiments in neuronal N2A cells. Moreover, LIN7 silencing 38 

prevented the extension of filopodia and neurites, induced by ectopic expression of IRSp53 or 39 

serum starvation, respectively in undifferentiated and differentiated N2A cells. The expression of 40 

full length IRSp53 or the LIN7ΔPDZ mutant lacking the domain for association with IRSp53 was 41 

unable to restore neuritogenesis in LIN7 silenced cells. Conversely, defective neuritogenesis could 42 

be rescued by the expression of RNAi-resistant full length LIN7 or chimeric L27-IRSp53. Finally, 43 

LIN7 silencing prevented the recruitment of IRSp53 in Triton X-100 insoluble complexes, 44 

otherwise occurring in differentiated cells. Collectively these data indicate that LIN7 is a novel 45 

regulator of IRSp53, and that their association is required to promote the formation of actin-46 

dependent filopodia and neurites. 47 

48 
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 3

INTRODUCTION 49 

To explore the environment and make contacts with other cells and/or the substratum, several cell 50 

types extend rod-like surface projections filled with bundles of parallel actin filaments (F-actin), 51 

called filopodia. In neuronal cells, filopodia emerging from dendrites and axons are essential for 52 

synapse and neurite initiation (Ziv and Smith, 1996; Dent et al., 2007), while those emanating from 53 

growth cones are involved in their directional motility (Lowery and Van Vactor, 2009). 54 

The molecular details of the initiation and maintenance of these protrusions have been the 55 

subject of intense investigations. A number of crucial molecular players, mostly controlling the 56 

dynamic and architectural organisation of actin filaments at the bases of filopodia formation have 57 

been identified. For example, a pivotal role is played by a filopodial tip multiprotein complex 58 

located at the interface between the growing ends of actin filaments and the plasma membrane (Faix 59 

and Rottner, 2006). The tip complex contains a variety of actin-associated proteins, which possess 60 

different functional and biochemical roles, including binding and/or sequestering of actin 61 

monomers, nucleation of actin filaments, capping or anti-capping of barbed ends, severing, 62 

bundling and anchoring of actin filaments (Faix and Rottner, 2006).  63 

A key molecule of the tip complex is the insulin receptor substrate protein of 53 kDa 64 

(IRSp53) (Nakagawa et al., 2003). At the signaling levels, IRSp53 likely acts as an effector protein 65 

that physically links activated Rho-GTPases, such as Cdc42 and Rac (Krugmann et al., 2001), with 66 

a variety of actin regulatory proteins (Ahmed et al., 2010), further restricting their cellular 67 

localisation to the plasma membrane. IRSp53 was identified as the founding member of a family of 68 

proteins featuring the presence of the so-called IRSp53 and missing-in-metastasis (MIM) homology 69 

domain, IMD (Lee et al., 2002). This domain belongs to the larger family of the Bin–Amphiphysin–70 

Rvs167 (BAR) domain that binds to phospholipid-rich lipid bilayers of different curvatures. Most 71 

BAR domains display a concave, banana-shaped structure, which is critical to promote positive 72 

membrane curvature leading to invagination. IRSp53 inverted BAR domain (I-BAR) folds, instead, 73 

into a straight cigar-shaped dimer, with a distribution on its convex side of positively-charged 74 

residues that contact negatively-charged membranes, thus promoting negative membrane curvature 75 

typical of filopodia protrusions (Scita et al., 2008; Zhao et al., 2011). In keeping with this latter 76 

notion, the ectopic expression of the I-BAR domain alone is sufficient to induce filopodia-like 77 

protrusions that, however, exhibit a low content of F-actin (Mattila et al., 2007; Yang et al., 2009). 78 

The efficient formation of actin-filled protrusions requires Rho GTPases activation of IRSp53 at the 79 

plasma membrane (Krugmann et al., 2001). At this location, IRSp53 may initiate membrane 80 

deformation by recruiting a variety of actin regulators, including Mena (Ena/VASP) family 81 

proteins, N-WASP, mDia, and Eps8 (Scita et al., 2008), through its SH3 domain. Thus, IRSp53 82 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

A
cc

ep
te

d 
m

an
us

cr
ip

t



 4

may couple membrane protrusions and F-actin for filopodia extension from the cell periphery 83 

(Ahmed et al., 2010).  84 

 During the last years, a role for IRSp53-mediated filopodia in neuritogenesis has also 85 

emerged: neurites have been shown to form from dilation of a single stable filopodium (Dent et al., 86 

2007), the ectopic expression of IRSp53 induces neurite formation (Miki and Takenawa, 2002), 87 

whereas IRSp53 silencing reduces neurite outgrowth (Goh et al., 2011a). The precise molecular 88 

mechanisms of IRSp53-mediated formation of filopodia and neurites, however, remain ill-defined. 89 

 Among the three isoforms of IRSp53 (L, S, and IRS-58) identified in rodents, the long (L) 90 

and short (S) isoforms are predominantly expressed in neurons (Okamura-Oho et al., 2001; 91 

Miyahara et al., 2003). The shorter IRSp53 (also known as BAIAP2α, brain-specific angiogenesis 92 

inhibitor-1 associated protein 2α) is the only isoform containing a PDZ (PSD-95/Discs large/Zona 93 

occludens-1)-target motif at its C-terminal end for interaction with proteins containing class 1 PDZ 94 

domains, including LIN7/MALS (mammalian LIN seven) proteins (Hori et al., 2003), the PSD-95 95 

and chapsyn-110/PSD-93 members of the PSD-95 (postsynaptic density 95) family (Choi et al., 96 

2005) and the neuronal channel-interacting PDZ protein CIPP (Barilari and Dente, 2010). 97 

 The physiological role of the various PDZ proteins in IRSp53 function is still unclear, but 98 

data indicating their function in the engagement of IRSp53 with macromolecular junctional 99 

complexes in polarised epithelial MDCK cells (Massari et al., 2009), and with post-synaptic density 100 

protein complexes in neurons have been provided (Choi et al., 2005; Barilari and Dente, 2010). 101 

However, PSD-95 family proteins are involved in late stages of neuronal differentiation that are 102 

accompanied by the stabilisation and maturation of filopodia to generate dendritic spines, whereas 103 

proteins, like LIN7, localising to both pre- and post-synaptic sites (Jo et al., 1999; Perego et al., 104 

2000; Olsen et al., 2005) may control the early steps of axonal and dendritic filopodia formation 105 

during synaptogenesis. 106 

 LIN7 is a small scaffold protein possessing only a single L27 domain, necessary for 107 

membrane recruitment, and a single PDZ1 domain mediating protein-protein interactions, including 108 

the one with IRSp53. The absence of either the L27 or PDZ domains causes mislocalisation of 109 

LIN7 as well as IRSp53 in a polarised epithelial cell line (Massari et al., 2009). In particular, the 110 

L27 domain of LIN7 is known to mediate heterodimerisation with L27 domain-containing 111 

membrane-associated guanylate kinase (MAGUK) proteins, including calcium/calmodulin-112 

dependent serine protein kinase (CASK), protein associated with LIN7 (Pals), synapse-associated 113 

protein 97 (SAP97) and isoforms of PSD-95 and PSD-93 (Chetkovich et al., 2002; Feng et al., 114 

2004; Funke et al., 2005), which form the core of protein complexes that mediate synaptic 115 

development, plasticity, and functionality (Zheng et al., 2011). In vertebrates, there are three genes, 116 
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LIN7-A-B-C also named MALS/Veli-1-2 -3, and alterations in these genes cause renal defects and 117 

synaptic dysfunctions (Olsen et al., 2007), and mice harbouring null mutations of all the three LIN7 118 

isoforms die perinatally with respiratory problems and impaired synaptic transmission (Olsen et al., 119 

2005). Moreover, polymorphisms and altered expression of LIN7 have been recently associated 120 

with human psychiatric conditions such as attention-deficit/hyperactivity disorder (ADHD) and 121 

neurodegenerative diseases (Lanktree et al., 2008; Zucker et al., 2010; Shinawi et al., 2011). 122 

Interestingly, certain IRSp53 alleles in humans have also been linked to ADHD (Ribases et al., 123 

2009).  124 

 Here we hypothesised that LIN7 is a possible partner of IRSp53 in the early steps of 125 

formation of filopodia and neurites; using a combination of structure-function studies with different 126 

mutants of either LIN7 or IRSp53 together with RNAi-based depletion in neuronal cell lines, we 127 

investigated the functional and molecular role of this protein partnership in filopodia formation and 128 

in neuritogenesis. Our morphological and biochemical data indicate a positive regulatory role for 129 

LIN7 in the formation of IRSp53-mediated actin-filled filopodia and neurites, and provide further 130 

evidence that neuritogenesis depends on actin-stabilised filopodia.  131 

132 
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RESULTS 133 

 134 

The localisation of LIN7 and IRSp53 in filopodia tips depends on the L27 domain of LIN7 and 135 

the PDZ target motif of IRSp53 136 

To gain initial clue as to a role of the LIN7:IRSp53 complex in filopodia, we ectopically expressed 137 

various combinations of epitope-tagged, wild type and mutant proteins (Fig. 1A) in NSC34 cells. 138 

This motoneuron-like cell line was chosen as model because it exhibits endogenous filopodia-like 139 

protrusions (width of ~1 μm and length of ~5-10 μm) containing actin filaments along their entire 140 

length. Both myc-IRSp53 and GFP-LIN7, expressed alone or in combination, localised along the 141 

entire shafts and often appeared enriched on their tips. Protrusions with club-shaped tips similar to 142 

those shown in figure 1B have been previously described in cells expressing constitutively active 143 

human formin mDia2  (Yang et al., 2007; Block et al., 2008), suggesting that overexpression of the 144 

constructs may activate formins (see also the Discussion in relation to this point). The IRSp53Δ5 145 

construct lacking the association motif for the PDZ domain of LIN7 maintained the localisation 146 

along the shafts, but completely lost the tip enrichment (Fig. 1B, see plot profiles of the 147 

representative filopodia), suggesting that an interaction with PDZ-containing proteins endogenously 148 

expressed by these cells, such as LIN7, may be crucial for proper targeting of IRSp53. To 149 

strengthen this notion, we used a chimeric construct in which the LIN7-binding-deficient IRSp53Δ5 150 

mutant was targeted to the plasma membrane by adding the L27 domain of LIN7 to its N-terminus 151 

(L27-IRSp53Δ5 chimera) (Massari et al., 2009). The L27 domain was sufficient to fully rescue tip 152 

localisation of IRSp53Δ5 (compare the plot profile of L27-IRSp53Δ5 chimera in panel C with that 153 

of IRSp53Δ5 in panel B). The importance of the L27 domain of LIN7 was further supported by the 154 

finding that a LIN7 mutant deleted of the L27 domain (LIN7ΔL27) was excluded from protrusions, 155 

and caused the sequestration of the coexpressed IRSp53 in the cytoplasm (Fig. 1C).  156 

The localisation data above described for overexpressed constructs were not verified with 157 

endogenous LIN7 and IRSp53, because both proteins were under the level of detection using their 158 

specific antibody. However, overexpressed LIN7 and IRSp53 colocalise in protrusions and most 159 

prominently at their tips, and these tip enrichments were abolished when interaction between the 160 

two proteins was prevented (see a summary of localisation data in panel D), hence suggesting a role 161 

for the LIN7:IRSp53 complex in the extension of membrane protrusions. 162 

 163 

LIN7 regulates the protrusion promoting activity of IRSp53.  164 

It is well established that the expression of full length IRSp53 as well as of its isolated I-BAR 165 

domain is sufficient to induce filopodia-like protrusions in a variety of cell lines. Notably, however, 166 
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 7

these protrusions, particularly when induced by the I-BAR domain of IRSp53, differ from canonical 167 

filopodia since they generally display a lower content of organised F-actin. In addition, the 168 

transfected proteins are uniformly distributed along the entire shaft, instead of being enriched at the 169 

tips of the protrusions (Faix and Rottner, 2006; Mattila et al., 2007; Yang et al., 2009). We obtained 170 

similar results in NSC34 cells. In these cells, the expression of IRSp53 or IRSp53Δ5 induced a 171 

large number of protrusions that appeared floppy and branched, and frequently devoid of F-actin, 172 

which could, instead, be detected mainly at the bases of these structures (Fig. 2A-B). Notably, 173 

however, a “normal” morphology and structural organisation was restored by the concomitant 174 

expression of LIN7 and IRSp53, but not with IRSp53Δ5 (see Fig. 1B for protrusion magnification). 175 

Aberrant, actin-deficient protrusions were also virtually absent in cells expressing the chimeric 176 

protein L27-IRSp53Δ5 (Fig. 2C and see Fig. 1C for protrusion magnification). Since comparable 177 

levels of expression of the IRSp53 constructs were measured by Western blot analysis (see Fig. S1 178 

in supplementary material), these data suggest that LIN7 coexpression is necessary and sufficient to 179 

prevent the aberrant protrusions induced by overexpressed IRSp53. It is of note that the mean total 180 

number of protrusions (actin-filled + actin deficient) significantly increased under all conditions of 181 

transfection tested (Fig. 2D), albeit it was less pronounced in cells coexpressing LIN7 with IRSp53 182 

or the L27-IRSp53Δ5 chimera alone, which remarkably displayed only actin-filled protrusions. 183 

These results therefore reinforce a critical role of LIN7 in promoting IRSp53-mediated, F-actin-184 

positive protrusions. 185 

 The effect of LIN7:IRSp53 association on F-actin was also analysed by measuring the ratio 186 

of F-actin/monomeric G-actin (Fig. 2E). This assay is based on the differential extractability of F- 187 

and G-actin from cells by non-ionic detergent (Blikstad and Carlsson, 1982). We found unaltered F-188 

to G-actin ratio in cells expressing IRSp53Δ5, whereas it was significantly increased in cells 189 

expressing the L27-IRSp53Δ5 chimera, further supporting that LIN7-mediated plasma membrane 190 

recruitment of IRSp53 is necessary for the stabilisation of actin in protrusions induced by the 191 

ectopic expression of IRSp53.  192 

 193 

Effect of IRSp53 and L27-IRSp53 on filopodia dynamic in live-cell imaging  194 

Based on morphological criteria, the protrusions of 5-10 μm length and width of ~1 μm containing 195 

actin for their entire length described in NSC34 cells could be considered filopodia (Yang and 196 

Svitkina, 2011). However, filopodia are defined as highly dynamic protrusions undergoing rapid 197 

cycles of extension and resorption, we therefore analysed the role of LIN7 in filopodia extension by 198 

live-cell imaging experiments. These experiments were performed in neuroblastoma N2A cells 199 

because of their high efficiency of transfection and tolerance to the environmental and illumination 200 
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 8

conditions (laser light) during time-lapse recording. Moreover, N2A cells behave like proliferating, 201 

undifferentiated neuroblasts when grown in the presence of serum, while extend filopodia and 202 

neurites upon serum deprivation (Wu et al., 1998). 203 

We compared filopodia induced by 16 h serum starvation in cells expressing GFP-tagged 204 

IRSp53 or L27-IRSp53 in reconstitution experiments for length and lifetime. In these experiments, 205 

the cells were cotransfected with RFP-pLifeAct to identify F-actin-filled filopodia, and cells 206 

transfected with GFP fused to a plasma membrane localisation signal (mGFP) were used as control.  207 

The extent of protrusions induced by IRSp53 or L27-IRSp53 expression in differentiated 208 

N2A cells were equivalent to those promoted in NSC34 cells, as total protrusions were respectively 209 

1.72-fold (± 0.03) and 1.4-fold (± 0.16) higher than control. Filopodia were positive for LifeAct and 210 

the IRSp53 and LIN7 along their lengths (Fig. 3A-C), and their average length (3.44 μm ± 0.36) did 211 

not differ significantly from control. The lifetime of filopodia protruding or retracting was 212 

significantly decreased from 170 s in the control to 110 s in both IRSp53 and L27-IRsp53 filopodia 213 

(examples in A-C, quantification in D, and see Movies 1-3 in supplementary material). However, 214 

the time-lapse analysis indicated a 2-fold increase in static linear protrusions in IRSp53 transfected 215 

cells compared to control (Fig. 3E). Even the abnormal, branched and F-actin-poor protrusions 216 

induced by overexpressed IRSp53 were static during the 5 min examined (Fig. 3G, and see Movie 4 217 

in supplementary material). In sharp contrast, static protrusions were drastically reduced in cells 218 

expressing the L27-IRSp53 chimera (Fig. 3E), and almost all the protrusions induced by the 219 

chimera were dynamic and thus identified as filopodia. In line with these findings, the total number 220 

of filopodia protruding or retracting from 100 μm plasma membrane within 5 min doubled the 221 

control in L27-IRSp53 expressing cells, whereas it did not differ significantly in IRSp53 expressing 222 

cells (Fig. 3F). 223 

Since the level of expression of the constructs was comparable (see Fig. S2 in 224 

supplementary material), these data confirm the results obtained in NSC34 cells concerning the 225 

LIN7 control of altered protrusions induced by IRSp53 overexpression and robustly indicate 226 

IRSp53 requirement of LIN7 to promote filopodia.  227 

 228 

LIN7 is required for IRSp53-induced differentiation of neuronal N2A cells 229 

To further demonstrate the role of LIN7 in filopodia, LIN7 was silenced in N2A cells. Since actin 230 

bundling and filopodia formation are critical early steps in neurite formation (Dent et al., 2007), 231 

neuritogenesis was analysed in LIN7 silenced N2A cells. 232 

 Three different LIN7A, B, C isoforms are frequently ubiquitously expressed: LIN7A is 233 

larger with a predicted molecular weight of 29 kDa. LIN7B and C are, instead, smaller and 234 
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 9

predicted to have a similar 22 kDa molecular weight. We used a pan-LIN7 antibody (which does 235 

not distinguish among the three LIN7 isoforms) to asses which isoforms were expressed in N2A 236 

cells by immunoblotting. As shown in Fig. 4A, we could only detect a single 22 kDa band, possibly 237 

corresponding to LIN7B and C. The pan-IRSp53 antibody predominantly recognised a doublet 238 

(~75% of the total bands) migrating at the expected 50-53 kDa molecular weight for IRSp53-S, 239 

with the band of lower mobility probably corresponding to phosphorylated IRSp53-S (Cohen et al., 240 

2011), and a 70 kDa band corresponding to mobility of the IRSp53-L isoform (Okamura-Oho et al., 241 

2001; Miyahara et al., 2003). The doublet was immunoprecipitated by the LIN7 antibody but not by 242 

the preimmune serum (bands 1, 2 in the IP). However, bands with molecular weight corresponding 243 

to IRSp53-S dimers and tetramers (bands 4-5 in the IP) and, surprisingly, also the band of ~70 kDa 244 

was selectively detected in LIN7 immunocomplexes (Fig 4A). All the unexpected bands might be 245 

artefacts due to oligomerisation with IRSp53-S occurring in the immunoprecipitation condition.  246 

 The 22 kDa band was greatly reduced in N2A cells silenced for LIN7C (Fig. 4B), and the 247 

reduction level correlated with the transfection efficiency in this cell system, thus suggesting that 248 

LIN7C is the main, if not exclusive, isoform in N2A cells. The LIN7C silencing did not affect the 249 

expression of all the IRSp53 endogenous isoforms, but completely prevented the extension of 250 

protrusions, recognised as filopodia and neurites on the basis of their length and size, induced by 48 251 

h serum starvation or promoted by IRSp53 overexpression in undifferentiated N2A cells (Fig. 4C 252 

and quantification in E). Similar results were obtained with shRNA 2 (see Fig. S3 in supplementary 253 

material). The requirement of LIN7 for IRSp53-mediated protrusions appears to be specific, as 254 

silencing of LIN7C did not prevent neuritogenesis and filopodia formation induced by mDia1 or 255 

mDia2 (Fig. 4D, quantification in E), members of the formin family of proteins that induce 256 

filopodia and neurite extension by promoting the nucleation and linear elongation of actin (Faix and 257 

Grosse, 2006).  258 

 259 

Differentiation of N2A cells requires the L27 and PDZ domains of LIN7.  260 

We further analysed the role of LIN7 in IRSp53-mediated neurite outgrowth and the requirement of 261 

the LIN7 domains. To this end, N2A cells were transfected (green signal) with the empty vector 262 

(pSUPER) or with cDNA encoding shRNA LIN7C, and 24 h after transfection the cells were 263 

cultured in serum-free medium for 48 h to induce differentiation (Fig. 5).  264 

 Analysis of phase contrast images (Fig. 5A), and their corresponding quantifications (Fig. 265 

5B), indicate highly significant reduction of neurites induced by serum-starvation in LIN7C 266 

silenced cells, confirming the essential function of the LIN7C isoform in neurite extension. The 267 

expression of IRSp53 in LIN7C-interferred cells did not restore neuritogenesis, which was, instead, 268 
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 10

fully rescued by the expression of the RNA silencing resistant LIN7A isoform. Notably, 269 

neuritogenesis was not re-established by the expression of the LIN7 variant lacking the PDZ 270 

domain, but it was fully restored by the L27-IRSp53 chimera. Since the levels of expression of the 271 

constructs were comparable (see Fig. S4 in supplementary material), these data further demonstrate 272 

the requirement of both domains of LIN7 for IRSp53-mediated neuritogenesis.  273 

 274 

LIN7 is required to relocate IRSp53 in Triton X-100 insoluble complexes in differentiated 275 

N2A cells  276 

If formation of actin-filled protrusions (neurites) during N2A differentiation depends on LIN7 277 

recruitment of IRSp53 to plasma membrane sites, we might expect an increased amount of the latter 278 

protein to remain associated with fractions rich in plasma membranes and cytoskeletal elements. 279 

Insolubility of a protein to non-ionic detergent is largely dependent on the strength of its association 280 

with actin cytoskeleton (Gilbert and Fulton, 1985), we therefore investigated the Triton X-100 281 

solubility of LIN7 and IRSp53 in control and silenced N2A cells (Fig. 6).  282 

 Undifferentiated (+FBS) or serum-free medium differentiated (-FBS) N2A cells were lysed 283 

in 0.5% Triton X-100 for 10 min at 0°C, and equal volumes of soluble (S) or insoluble (I) fractions 284 

were analysed by immunoblotting. The amount of LIN7 and IRSp53 recovered in the Triton X-100 285 

insoluble cytoskeletal-associated fraction increased in differentiated cells, reaching ~60% after 48 h 286 

in serum free medium (Fig. 6A). This finding suggests that under conditions of neurite outgrowth 287 

there is an increased association of LIN7 and IRSp53 with the F-actin cytoskeleton. 288 

 To demonstrate that IRSp53 detergent insolubility depends on LIN7, we characterised three 289 

independent N2A clones (2, 5 and 9) stably silenced for LIN7C with shRNA 1 (Fig. 6B). It is of 290 

note that the total level of downregulation of IRSp53 was directly proportional to that of LIN7, 291 

suggesting that LIN7 protects IRSp53 from degradation. More importantly, a nearly complete 292 

absence of neurites (Fig. 6C) and of IRSp53 redistribution in Triton X-100 insoluble fractions (Fig. 293 

6D) was found in silenced cell lines even after 48 h serum-starvation. The defective neuritogenesis 294 

observed in these cells coincided with that obtained in transiently silenced cells, where the 295 

expression of IRSp53 was unchanged (see Fig. 4B and Fig. S3 in supplementary material), further 296 

corroborating the requirement of the LIN7:IRSp53 complex for neuritogenesis.  297 

298 
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DISCUSSION 299 

By coupling membrane deformation to actin filament polymerisation, IRSp53 has emerged as one 300 

of the key proteins in promoting plasma membrane protrusions (filopodia) considered to be 301 

precursors of neurites and polarised structures such as synapses (Ziv and Smith, 1996; Dent et al., 302 

2007). We have previously shown that LIN7 regulates epithelial polarity through its binding and 303 

recruitment of IRSp53 to tight junctional plasma membrane domains (Massari et al., 2009), and 304 

here, we have tested whether LIN7 regulates the formation of IRSp53-dependent filopodia and 305 

neurites.  306 

 Our findings indicate that LIN7 plays a positive regulatory role on the filopodia and neurite 307 

promoting activity of IRSp53, and that this regulation depends on both protein-protein association 308 

domains of LIN7: the PDZ domain for binding to the last C-terminal residues of IRSp53, and the 309 

L27 domain for association with plasma membrane protein complexes.  310 

 We found that full length LIN7 regulates IRSp53 activity by preventing the formation of 311 

actin-deficient abnormal protrusions and by sustaining the extension of F-actin-rich protrusions in 312 

NSC34 cells. These findings were confirmed by live-cell imaging experiments in differentiated 313 

N2A cells, collectively indicating that static protrusions induced by the overexpression of IRSp53 314 

were abolished in cells overexpressing the L27-IRSp53 chimera, and that virtually all the 315 

protrusions in cells overexpressing the L27-IRSp53 chimera were dynamic and thus bona fide 316 

identified as filopodia. Moreover, downregulation of LIN7C by shRNA definitively demonstrate the 317 

strict requirement of LIN7C isoform in the formation of filopodia and neurites induced by IRSp53, 318 

as overexpression of IRSp53 completely failed to induce any protrusions in N2A silenced for LIN7. 319 

LIN7 association with IRSp53 rather than its simple presence was required to control 320 

IRSp53 activity, and this is clearly indicated by the fact that LIN7 is not able to prevent the 321 

formation of actin-deficient protrusions induced by the expression of the IRSp53Δ5 mutant lacking 322 

the interaction motif for LIN7. The additional finding that protrusions unstained or poorly labelled 323 

by phalloidin, and thus floppy, are formed in cells expressing either unbalanced levels of IRSp53 324 

and LIN7 or the IRSp53Δ5 mutant, further suggests that the two proteins must operate as a tightly 325 

regulated complex for the proper formation of actin-proficient cellular protrusions. In line with 326 

these findings, IRSp53 and LIN7 colocalise at the tips of actin-filled protrusions, whereas IRSp53 is 327 

uniformly distributed along those actin-deficient. Notably, LIN7 localisation at the tips depends also 328 

on the L27 domain, that not only mediates LIN7 membrane association, but is also necessary and 329 

sufficient to direct to the tips the otherwise uniformly distributed IRSp53Δ5 (chimera L27-330 

IRSp53Δ5). Finally, LIN7 lacking the L27 domain, but maintaining the PDZ domain sequesters 331 

IRSp53 in the cytoplasm, thus preventing the formation of actin-deficient protrusions. Conversely, 332 
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LIN7ΔL27 is not able to retain IRSp53Δ5 in the cytoplasm and to inhibit the formation of actin-333 

deficient protrusions. The essential role for LIN7 association with IRSp53 is further supported by 334 

functional interference studies (using RNAi-based downregulation of LIN7C) and structure-335 

function rescue experiments, which collectively argue that the association between LIN7 and 336 

IRSp53 is necessary for neuritogenesis. Again, both the L27 and PDZ domains of LIN7 are required 337 

to rescue neuritogenesis in N2A cells silenced for LIN7C, the major isoform in these cells, as 338 

demonstrated by transient and stable downregulation experiments. These data further suggest that 339 

LIN7, through recruitment of IRSp53 to plasma membrane complexes, is a critical early molecular 340 

determinant in the formation of these protrusions.  341 

 Collectively our data strengthens the crucial importance of LIN7 for IRSp53 function, while 342 

arguing against a role exerted by LIN7 in filopodia generated by pathways involving the mDia1 and 343 

mDia2 formins. Recently, mDia1, but not mDia2, was shown to be an important SH3 domain 344 

partner of IRSp53 in forming filopodia (Goh et al., 2011b). In line with the emerging notion that 345 

there are multiple mechanisms regulating the formation of these structures, it is therefore possible 346 

that IRSp53 may participate in filopodia formation either through LIN7 or through mDia1, 347 

depending on cell context and different stimuli.  348 

 Our data, showing that the L27 domain of LIN7 is necessary and sufficient to localise 349 

IRSp53 to protrusion tips in NSC34 cells and to promote filopodia and neurite in N2A cells, suggest 350 

that interactors of the L27 domains play a crucial role in IRSp53 membrane recruitment. IRSp53 351 

may exist in an autoinhibited state in the cytoplasm, and IRSp53 dimers may become active on the 352 

plasma membrane through binding to activated Rho-GTPases (Krugmann et al., 2001). The surface 353 

recruitment of IRSp53 is therefore a first crucial step in filopodia extension from the cell periphery, 354 

and the L27 domain of LIN7 may accomplish this function. 355 

 The L27 domains form heterodimers to achieve their biological functions and to correctly 356 

assemble protein complexes and prevent promiscuous binding (Feng et al., 2004; Funke et al., 357 

2005; Shin et al., 2006). Partners of the L27 domain of LIN7 are MAGUK proteins, and 358 

multimerisation of these proteins via their L27 domains may be required to link Rho family small 359 

GTPases with IRSp53, thus stabilising IRSp53 in its active dimeric form, with its I-BAR and SH3 360 

domains respectively competent for membrane curvature and concentration, at the tips of emergent 361 

protrusions, of downstream effectors involved in initiation and bundling of actin filaments. For 362 

instance, LIN7 may recruit IRSp53 in the PAR3/PAR6/atypical PKC (protein kinase C) complex 363 

that through the guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis) 364 

control cell-cell junction assembly in epithelia and neurons (Shin et al., 2006), neurite elongation 365 

and axon or dendrite fate (Yoshimura et al., 2006).  366 
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 In agreement with a role for LIN7 in increasing the association of IRSp53 to actin filaments, 367 

cells silenced for LIN7 fail to differentiate and to increase the amount of IRSp53 found in the 368 

detergent insoluble fraction. Moreover, decreased amount of IRSp53 was found in cell lines stably 369 

silenced for LIN7, suggesting that LIN7-mediated recruitment in Triton X-100 insoluble complexes 370 

may not only activate but also protect IRSp53 from downregulation.  371 

 To conclude, our data identify in LIN7 a novel regulator of IRSp53 that is critical to 372 

spatially restrict the LIN7-IRSp53 complex to the plasma membrane for filopodia and neurite 373 

initiation, and to further promote the stabilisation of these actin–rich structures. Moreover, 374 

underlying the key role of the LIN7:IRSp53 association in neuritogenesis, our results suggest that 375 

neurodevelopmental disorders, such as human attention-deficit/hyperactivity disorder (ADHD), 376 

recently associated with polymorphisms of LIN7 or IRSp53 or altered expression of LIN7 in 377 

humans (Lanktree et al., 2008; Ribases et al., 2009; Zucker et al., 2010; Shinawi et al., 2011) may 378 

be due to unbalanced alterations in the expression of LIN7 and/or IRSp53 or to mutations that 379 

prevent their interaction. 380 

381 
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MATERIALS AND METHODS 382 

Constructs 383 

Generation and subcloning of mouse LIN7A, human IRSp53 constructs and chimeras have been 384 

previously described (Massari et al., 2009). The GFP-mDia1, GFP-mDia2 and GFP-IRSp53 cDNAs 385 

used in this paper have been described elsewhere (Yang et al., 2009). Small hairpin RNA: two pairs 386 

of complementary oligonucleotides containing a 19-nt sequence derived from the messenger RNA 387 

transcript of murine LIN7C were synthesised by Invitrogen custom primers: 5’-388 

GGGAAGGTTAAATTAGTCG-3’ (shRNA1), and 5’-CGGATAATTCCAGGTGGAA-3’ 389 

(shRNA2). These sequences did not have any significant homology to other genes in the human 390 

genome database and shRNA 2 was chosen from the validated MISSION shRNA library (Sigma, 391 

St. Louis, MO). The forward and reverse oligos were annealed and cloned into BglII–XhoI 392 

restriction sites of the pSUPER.gfp/neo RNAi system (OligoEngine, Inc., Seattle, WA), followed 393 

by amplification of the resulting plasmid. The absence of unwanted substitutions was checked by 394 

sequencing (PRIMM, Milan, Italy). Similar results were obtained with the two shRNAs, but all the 395 

presented experiments were obtained with shRNA 1 because a higher level of downregulation was 396 

measured by Western blot analysis (see Fig. S3 in supplementary material). RFP-pLifeAct (Ibidi 397 

GmbH, Martinsried, München, GE) was used to visualise filopodial F-actin in live cell imaging 398 

experiments, and a GFP construct fused to a membrane localisation sequence (mGFP) was a kind 399 

gift of Dr N. Borgese (Ronchi et al., 2008). 400 

 401 

Cell culture and transfection 402 

The NSC34 murine motoneuron-neuroblastoma hybrid cell line (Cashman et al., 1992) were grown 403 

in DMEM (Sigma) with 5% FBS (Sigma), 1 mM pyruvate, 1 mM glutamine and antibiotics. Murine 404 

neuroblastoma Neuro2A (N2A) cells (Klebe and Ruddle, 1969) were grown in DMEM with 10% 405 

FBS, 1 mM glutamine and antibiotics. The cell lines were cultured in a 37°C incubator containing 406 

5% CO2. Transfections: cDNAs and shRNAs were transiently transfected in NSC34 and N2A cell 407 

lines using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), following the manufacturers protocol. 408 

For cotransfections 1:1 cDNAs ratio were used. The N2A cell lines stably expressing shRNA 409 

LIN7C were selected on the basis of growth in the antibiotic G418 (0.5 mg/ml) (Sigma), and the 410 

expression of the construct was assessed by fluorescence microscopy and Western blotting.  411 

 412 

Antibodies 413 

Commercial primary antibodies were mouse monoclonal anti-myc (Santa Cruz Biotechnology, 414 

Santa Cruz, CA), anti-actin (Sigma) and anti-GFP (MBL, Medical and Biological laboratories Co., 415 
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Japan). The polyclonal rabbit anti-LIN7 antiserum was raised against the histidine-LIN7A fusion 416 

protein (Massari et al., 2009); anti-Calnexin (Stressgen, San Diego, CA) and anti-TOM20 (Santa 417 

Cruz Biotechnology) were commercial polyclonal antibodies raised in rabbit. The polyclonal rabbit 418 

anti-IRSp53 was a kind gift from Dr E. Kim (Korea Advanced Institute of Science and Technology) 419 

(Choi et al., 2005). 420 

 421 

Triton X-100 cytoskeleton extraction  422 

Detergent extraction experiments were carried out as described (Blikstad and Carlsson, 1982). 423 

Briefly, cells were treated for 10 min at 0°C using extraction buffer (0.5% Triton X-100, 100 mM 424 

NaF, 50 mM KCl, 2 mM MgCl2, 1 mM EGTA, 10 mM KPO4, pH 7.5, 0.5 M sucrose) 425 

supplemented with PMSF (phenylmethylsulfonyl fluoride) and protease cocktail inhibitor (Sigma) 426 

to block the partial depolymerisation of actin seen in other buffers. Cells were collected and 427 

sedimented by centrifugation at 13,000 g for 20 min. The supernatant (detergent-soluble fraction 428 

containing the G-actin fraction) was taken for immunoblotting. Cell matrice pellets containing F-429 

actin fractions were scraped in the same extraction buffer of the supernatant with a rubber 430 

policeman, and both fractions were solubilised with the same volume of sodium dodecyl sulfate 431 

(SDS) denaturation buffer. Equal volumes of each fraction were probed by immunoblotting on an 432 

11% SDS-PAGE with the indicated antibodies. 433 

 434 

Immunoprecipitation and Western blot analysis 435 

N2A cells  grown to 90% confluence in 100 mm dishes were harvested in 1.5 ml of ice-cold lysis 436 

buffer (25 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM EDTA, 0.5% Triton X-100, 1 mM DTT, 437 

PMSF and a cocktail of protease inhibitors) for 30 min at 4°C. The lysates were then spun at 14,000 438 

g for 20 min at 4°C. For input samples, 40 μl of the cell lysate were mixed with 2x SDS samples 439 

loading buffer and heated at 100°C for 5 min. For affinity precipitation, 700 μl of lysate were 440 

incubated with 25 μl bead volume of protein A–sepharose cross linked to anti-LIN7 antibodies or 441 

preimmune IgG at 4°C for 2 h. The immunocomplexes, washed and released from the beads by 442 

boiling the samples in SDS solubilisation buffer, and 20 μl of the input sample (3% of the total) 443 

were loaded onto a 10% SDS–PAGE, and transferred onto nitrocellulose membranes (PerkinElmer 444 

Life Science, Waltham, MA). The blots were probed with the indicated primary antibodies, 445 

followed by peroxidase conjugated with mouse IgG or anti-rabbit IgG, light chain specific (Jackson 446 

ImmunoResearch Laboratories, West Grove, PA, USA) and proteins were visualised by ECL 447 

(PerkinElmer Life Science). Signal intensity was quantified by densitometry using NIH ImageJ 1.59 448 

software. 449 
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 450 

Immunofluorescence  451 

After being grown and transfected as described, the cells were either used for live-cell imaging (see 452 

below) or fixed for 20 min in 4% paraformaldehyde and permeabilised with 0.5% Triton X-100. 453 

Immunostaining with primary antibodies was followed by incubation with FITC/CY5 anti-454 

rabbit/mouse antibodies (Jackson Immunoresearch). Rhodamine-labelled phalloidin (Cytoskeleton, 455 

Denver, CO) was used to detect filamentous actin. The confocal images were acquired using a Bio-456 

Rad MRC-1024 confocal microscope.  457 

 458 

Live-cell imaging 459 

For live-cell imaging experiments, N2A cells were cotransfected with GFP tagged IRSp53 460 

constructs (IRSp53 and L27-IRSp53) or with mGFP as a control and RFP-pLifeAct. Twenty-four 461 

hours after transfection, cells were serum-starved for additional 16 h and then placed in an 462 

environmentally controlled chamber with 5% CO2 at 37°C, using an Axiovert 200M (Zeiss) 463 

confocal system equipped with spinning-disc (PerkinElmer). A 100X objective and the 488/561 nm 464 

laser lines were used for acquisition of GFP fusion proteins or RFP-LifeAct, respectively. Images 465 

were collected every 20 s for a period of 10 min; thirty still images of each recording session were 466 

analysed for the emergence and retraction of protrusions.  467 

The unbranched, dynamic, actin-containing protrusions with a mean length of 3.44 μm ± 0.36 and 468 

half-life of 173 s ± 1 were defined filopodia; the branched and unbranched protrusions, poorly 469 

stained with phalloidin, unchanging their length and position from time zero to the end of the 470 

analysis (5 min), were respectively defined branched and linear static protrusions. For each 471 

transfectant a total of at least 400 μm of plasma membrane from 10 different cells obtained in two 472 

separate experiments were analysed. Image analysis was performed with the Volocity High-473 

Performance Imaging System (PerkinElmer). To measure lifetime: sixty protrusions from 10 474 

different cells obtained from two separate experiments were recorded. The number of frames from 475 

the point of emergence of individual filopodia to its complete loss was determined and multiplied 476 

by 20 s to achieve the lifetime. To determine the mean number of filopodia in 100 μm plasma 477 

membrane: for each transfectant were analysed a total of at least 400 μm of plasma membrane from 478 

10 different cells obtained in two separate experiments, and the total number of filopodia that 479 

protruded or retracted in the selected region of the membrane during the 5 min time-lapse were 480 

quantified. 481 

 482 

Image and statistical analysis 483 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

A
cc

ep
te

d 
m

an
us

cr
ip

t



 17

Morphological phenotypes in NSC34 cells were quantified using the following definitions. Actin-484 

filled protrusions: thin elongated structures (average length between 5-10 μm and width of 0.5-1 485 

μm) positively stained by labelled phalloidin for their entire length. Actin-deficient protrusions: 486 

protrusions corresponding to both linear and branched structures emerging from the plasma 487 

membrane not stained for their entire length with labelled phalloidin. 488 

Quantification of the signals was evaluated by using ImageJ plot profile. To count cell protrusions, 489 

the Adobe Photoshop software filters “trace contour” and “find edges” were sequentially applied at 490 

the outlined protrusions above described, and the average total number of actin-filled and actin-491 

deficient protrusions was obtained by manual counting in at least 20 different cells (6 mm of total 492 

plasma membrane) for each transfectant. 493 

For neurite quantification, after 48 h serum-starvation, cells were fixed in 4% paraformaldehyde for 494 

20 min at 37°C, and viewed with a Zeiss Axioplan inverted phase contrast microscope (40X 495 

objective) connected with an AxioCam HRm CCD camera. Neurites were defined as processes with 496 

a length of at least a cell body diameter, and this definition in no way attributes any functional value 497 

to these structures and is purely a reflection of morphological similarity to neurites.  498 

A total of 300 cells for each transfectant were examined in randomly chosen fields from three 499 

independent experiments. All quantitative data are presented as mean ± s.e.m.; multiple 500 

comparisons among groups were carried out by Student’s t test using Prism software (GraphPad 501 

PrismTM software). 502 

503 
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FIGURE LEGENDS 634 
 635 

Fig. 1. Colocalisation of IRSp53 and LIN7 to protrusion tips depends on the L27 domain of 636 

LIN7 and the PDZ target motif of IRSp53. A) Schematic representation of the domain 637 

organisation of LIN7 and IRSp53 constructs used in the study. The myc or GFP tags fused at the N-638 

termini and the domain structures are indicated; deleted domains are indicated with the X. (B-C) 639 

NSC34 cells were transiently transfected with the indicated cDNAs (left). Three days after 640 

transfection, cells were fixed in paraformaldehyde and stained with the myc antibody to localise 641 

IRSp53 and rhodamine-conjugated phalloidin to localise F-actin; localisation of LIN7 constructs is 642 

revealed by the GFP fluorescence. Merged images and individual staining of the selected magnified 643 

protrusions are shown. The signal quantifications were obtained using ImageJ “plot profile”. Pixel 644 

intensity along the corresponding protrusions is expressed in fluorescence arbitrary units (a.u.); tip 645 

and base of filopodia are indicated. Bars: 5 μm. (D).  A summary of localisation analysis, such as 646 

those in panels B and C, shows the examined constructs and their presence or absence in 647 

protrusions and protrusion tips.  648 

 649 

Fig. 2. LIN7 regulates the protrusion-promoting activity of IRSp53. NSC34 cells transfected 650 

with the indicated cDNAs were analysed by immunocytochemistry (A-D) or Western blot (E). (A- 651 

C) Cells were fixed in paraformaldehyde 3 days after transfection with the indicated cDNAs (top of 652 

each image), stained with rhodamine-conjugated phalloidin to localise F-actin and anti-myc 653 

antibody to localise IRSp53 constructs; LIN7 constructs were revealed by the GFP fluorescence. 654 

GFP-tagged empty vector was transfected as control (CTR). Merged images of the indicated double 655 

staining, and inset magnification (individual staining) of linear and branched protrusions boxed in 656 

the myc-IRSp53 and IRSp53Δ5 merged images. The histograms represent the percentage of actin-657 

deficient protrusions (linear + branched) measured in 20 different cells (6 mm of total plasma 658 

membrane) for each transfectant. Bars: 10 μm. (D) Quantification of total protrusion average (actin-659 

deficient + actin-filled) in 100 μm of plasma membrane obtained by measuring the protrusions in 660 

N>20 cells. Data are the means of at least three independent experiments. Error bars indicates ± 661 

s.e.m.; p values (t-test) are indicated. (E) Detergent extraction experiment. Equal volumes of 662 

insoluble F- and soluble G-actin fractions were loaded in 11% SDS-PAGE and blotted onto 663 

nitrocellulose; the amount of actin in each fraction was evaluated using specific antibodies. The 664 

molecular weight (kDa) is indicated on the right of the blot. Quantification showing mean ± s.e.m. 665 

of three independent experiments (one of which is shown) is presented as percentage of F- and G- 666 

actin; p value (t-test) is indicated.  667 
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Fig. 3. L27-IRSp53 induces dynamic protrusions in differentiated N2A. (A-C) Cells were 668 

cotransfected with RFP-LifeAct and membrane mGFP construct as control (A), GFP- IRSp53 (B) 669 

or GFP-L27-IRSp53 (C). Twenty-four h after transfection the cells were serum starved for 670 

additional 16 h. Whole cells are shown in the merged images (left), magnifications of the selected 671 

areas at the indicated time points are presented separately (green and red channels) and merged. 672 

Bars: 5 μm. Filopodia were measured for lifetime (D), percentage of static linear protrusions 673 

showing absence of assembly/disassembly (E), and average number of filopodia in 100 μm 674 

membrane (F). The graph (G) represents the changes in length of filopodia during the 5 min 675 

analysis and the unchanged length of 4 branched actin-deficient protrusions in cells expressing 676 

IRSp53. Quantification showing mean ± s.e.m. of two independent experiments; p values (t-test) are 677 

indicated. 678 

 679 

Fig. 4. IRSp53 requires LIN7 to induce neurite outgrowth in undifferentiated N2A cells. (A) 680 

Western blot characterisation of the expression of LIN7 and IRSp53 isoforms in N2A cells by 681 

immunoprecipitation with anti-LIN7 antibodies (IP: LIN7) or preimmune IgG (IP: preimmune 682 

serum). The presence of IRSp53 isoforms in the immunocomplexes was determined by 683 

immunoprobing the nitrocellulose membranes with anti-IRSp53 antibodies (IB: IRSp53), and 684 

immunoprecipitation of LIN7 was verified by using anti-LIN7 antibodies (IB: LIN7). Three per 685 

cent of cell lysate was probed with the same antibodies (Input). Bands 1, 2 with the relative 686 

molecular mass corresponding to de-phosphorylated and phosphorylated IRSp53-S; band 3 of the 687 

apparent molecular mass of the IRSp53-L; bands 4 and 5 with the apparent molecular mass of 688 

IRSp53-S dimers and tetramers, respectively. The arrow indicates the IgG light chain dimers 689 

recognised by peroxidase conjugated antibody. (B) A representative Western blot showing 690 

downregulation of LIN7C in N2A cells transiently transfected with shRNA 1. Ten micrograms of 691 

total protein extracts from control and silenced N2A cells were probed with a pan-LIN7 antibody 692 

for the expression of LIN7 isoforms, and with corresponding specific antibodies to probe IRSp53 693 

and Calnexin, the latter used as a loading control. The molecular weights (kDa) are indicated on the 694 

right of the blot. The histogram representing the percentage of LIN7 in silenced cells compared to 695 

control was obtained by densitometric quantification of the 22 kDa band (corresponding to LIN7B 696 

and/or C) normalised to Calnexin. Data are the means ± s.e.m. of four independent experiments; p 697 

value (t-test) compared to control is indicated. (C) Laser confocal microscopy of undifferentiated 698 

N2A cells transfected with the empty vector (pSUPER), the cDNA encoding GFP-IRSp53 (IRSp53) 699 

or cotransfected with GFP-IRSp53 and shRNA LIN7C cDNAs. Merged images show GFP-positive 700 

transfected cells, and phalloidin staining for actin in red. The insets show magnifications (2,2X) of 701 
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the process outlined in the merged image. Bar: 20 μm. (D) Undifferentiated N2A cells transfected 702 

with the cDNA encoding formin mDia2 or cotransfected with mDia2 and shRNA LIN7C cDNAs 703 

were analysed by laser confocal microscopy. Merged images show GFP-positive signal transfected 704 

cells, and phalloidin staining for actin in red. Bar: 20 μm. (E) Quantification of the percentage of 705 

cells with neurites (N>150 cells). Data are the means of three independent experiments. Error bars 706 

indicate ± s.e.m.; p values (t-test) are indicated. 707 

 708 

Fig. 5. IRSp53 requires LIN7 association for neurite outgrowth. (A) Phase contrast comparison 709 

of differentiated N2A cells transfected with the pSUPER empty vector (CTR), the vector encoding 710 

shRNA LIN7C or cotransfected with shRNA LIN7C and the indicated constructs. Transfected cells 711 

are identified by the green signal. Twenty-four hours after transfection, cells were serum-starved for 712 

additional 48 h to induce neurite outgrowth before fixation in 4% paraformaldehyde. Bar: 40 μm. 713 

(B) The histogram represents the effects of the transfectants on differentiated N2A cells; neurite 714 

outgrowth was scored by evaluating the percentage of cells with neurites. Data are the means ± 715 

s.e.m. of three independent experiments; processes in N>100 cells for each experiment were 716 

evaluated. P values (t-test) compared to control are indicated. 717 

 718 

Fig. 6. LIN7 increases Triton X-100 detergent insolubility of IRSp53 in differentiated N2A 719 

cells. (A) Western blot analysis of the amount of IRSp53 and LIN7 in Triton X-100 insoluble (I) 720 

and soluble (S) fractions. Undifferentiated N2A cells cultured in medium with 10% FBS 721 

(CTR+FBS) or differentiated in medium without serum (CTR-FBS) for 48 h were extracted in 0.5% 722 

Triton X-100 for 10 min at 0°C. Equivalent volumes of Triton X-100-insoluble or -soluble fractions 723 

were separated by 11% SDS-PAGE and immunostained for the indicated markers. The 724 

corresponding molecular weights (kDa) are indicated on the right of the blots. Representative 725 

immunoblots and densitometric quantification (expressed as % of the total I+S immunoreactivity) 726 

of two independent experiments are presented. The histogram on the right represents the values 727 

obtained by measuring the percentage of immunoreactivity in the insoluble fractions compared to 728 

that of CTR+FBS (CTR+FBS =1). Data are the means ± s.e.m. and p values (t-test) compared to 729 

control are indicated. (B) Western blot analysis of the level of expression of LIN7 and IRSp53 in 730 

the selected (2, 5 and 9) N2A clones specifically knocked down for LIN7C protein expression by 731 

shRNA 1. Ten micrograms of total protein extracts from control N2A cells (CTR) and N2A cells 732 

stably expressing shRNA were probed for LIN7 and IRSp53 expression; Calnexin was probed as a 733 

loading control. The corresponding molecular weights (kDa) are indicated on the right. (C) 734 

Confocal laser analysis of shRNA LIN7C clone 9 in undifferentiated (+FBS) or differentiated (-735 
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FBS) culture conditions. The expression of shRNA LIN7C (green) and staining of F-actin (red) are 736 

shown. Bar: 15 μm. (D) Western blot analysis of the amount of IRSp53 in Triton X-100 insoluble 737 

(I) and soluble (S) fractions from undifferentiated (+FBS) or differentiated (-FBS) N2A cells stably 738 

silenced for LIN7C. A representative immunoblot and the densitometric quantification (expressed 739 

as % of the total I+S immunoreactivity) of two independent experiments performed with clone 9 are 740 

shown. The histogram on the right represents the values ± s.e.m. of two independent experiments 741 

each one performed in both clones 2 and 9. Data were obtained by measuring the percentage of 742 

immunoreactivity in the insoluble fractions of clones 2 and 9 (2+9) compared to the percentage of 743 

immunoreactivity in the insoluble fraction of CTR+FBS (CTR+FBS =1).  744 

745 
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SUPPLEMENTARY MATERIAL 746 

Fig. S1. Levels of expression of IRSp53 (full length or mutants) in NSC34 cells transiently 747 

cotransfected with LIN7 or the pSUPER plasmid. A representative Western blot analysis is 748 

shown. Total protein extracts were probed (IB:) for IRSp53 and TOM20, the latter used as a loading 749 

control. Molecular weight standards are indicated on the left. The histogram representing the 750 

IRSp53 level of expression in the indicated cotransfection normalised to cotransfection with control 751 

pSUPER plasmid was obtained by densitometric quantification of IRSp53 bands normalised to 752 

TOM20.  753 

 754 

Fig. S2. Levels of expression of IRSp53 or L27-IRSp53 in N2A cells transiently transfected 755 

with the corresponding GFP-tagged cDNAs. A representative Western blot is shown. Total 756 

protein extracts were probed for IRSp53 and TOM20, the latter used as a loading control. Molecular 757 

weight standards are indicated on the left. The histogram representing the level of expression of the 758 

chimera L27-IRSp53 compared to IRSp53 was obtained by densitometric quantification of IRSp53 759 

bands normalised to TOM20.  760 

 761 

Fig. S3. Laser confocal microscopy of differentiated N2A cells transiently transfected with 762 

shRNAs for LIN7C (shRNA 1 and shRNA 2). Transfected cells were identified by the green 763 

signal, while the red signal identifies the phalloidin staining for F-actin. Merged images are shown. 764 

Bar: 20 μm The histogram representing the level of expression of LIN7 and IRSp53 in silenced 765 

cells compared to control cells (CTR) was obtained by densitometric quantification of IRSp53 and 766 

LIN7 bands normalised to Calnexin. Data are the means ± s.e.m. of two independent experiments; p 767 

values (t-test) compared to control are indicated. 768 

 769 

Fig. S4. Western blot analysis of the level of expression of the indicated IRSp53 or LIN7 770 

constructs transiently co-transfected with shRNA LIN7C in N2A cells. Total protein extracts 771 

were probed (IB:) for GFP or IRSp53 and for TOM20, as a loading control. Molecular weight 772 

standards are indicated on the left. The histograms represent the level of expression of LIN7ΔPDZ 773 

compared to LIN7 or L27-IRSp53 compared to IRSp53 in cells cotransfected with shRNA 1, and 774 

were obtained by densitometric quantification of GFP or IRSp53 bands normalised to TOM20.  775 
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