573 research outputs found

    Akute endokrine Krisen

    Get PDF

    Laser flash analysis of irradiated amorphous carbon stripper foils

    Get PDF

    A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement

    Get PDF
    The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVΔ92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed

    Multisystem inflammatory syndrome in adults: A case in a previously healthy adult

    Get PDF
    A 25-year-old previously healthy female presented to the emergency department (ED) with 5 days of rash, fevers, shortness of breath, and generalized weakness. She had presented to another ED 4 days previously and noted that her rash had improved, but her other symptoms were worsening. She had recovered from COVID-19, confirmed by positive antigen test 5 weeks prior. On ED arrival, she was afebrile and persistently tachycardic to a rate of 120 beats per minute, despite aggressive fluid resuscitation with 3L of IV crystalloid. She was found to have a troponin elevated to 0.06 ng/mL in addition to a d-dimer elevated to 1.42 mcg/mL FEU. She was admitted to the hospital where she developed hypotension requiring vasopressor support and was admitted to the intensive care unit (ICU). A transthoracic echocardiogram revealed a newly reduced ejection fraction of 31%. She was diagnosed with multisystem inflammatory syndrome in adults (MIS-A). The patient received intravenous immunoglobulin and methylprednisolone 60 mg Q12 hours while admitted. She was discharged on hospital day 3 with a prednisone taper and is currently doing well at her most recent follow-up with infectious disease

    Meditation-induced near-death experiences: a 3-year longitudinal study

    Get PDF
    Near-death experiences (NDEs) are life transformational events that are increasingly being subjected to empirical research. However, to date, no study has investigated the phenomenon of a meditation-induced near-death experience (MI-NDE) that is referred to in ancient Buddhist texts. Given that some advanced Buddhist meditators can induce NDEs at a pre-planned point in time, the MI-NDE may make NDEs more empirically accessible and thus advance understanding into the psychology of death-related processes. The present study recruited 12 advanced Buddhist meditators and compared the MI-NDE against two other meditation practices (i.e. that acted as control conditions) in the same participant group. Changes in the content and profundity of the MI-NDE were assessed longitudinally over a 3-year period. Findings demonstrated that compared to the control conditions, the MI-NDE prompted significantly greater pre-post increases in NDE profundity, mystical experiences and non-attachment. Furthermore, participants demonstrated significant increases in NDE profundity across the 3-year study period. Findings from an embedded qualitative analysis (using grounded theory) demonstrated that participants (i) were consciously aware of experiencing NDEs, (ii) retained volitional control over the content and duration of NDEs and (iii) elicited a rich array of non-worldly encounters and spiritual experiences. In addition to providing corroborating evidence in terms of the content of a “regular” (i.e. non-meditation-induced) NDE, novel NDE features identified in the present study indicate that there exist unexplored and/or poorly understood dimensions to NDEs. Furthermore, the study indicates that it would be feasible - including ethically feasible - for future research to recruit advanced meditators in order to assess real-time changes in neurological activity during NDEs

    Alpha decay of 176Au

    Get PDF
    International audienceThe isotope Au176 has been studied in the complete fusion reaction Ca40+Pr141 → 176Au+5n at the velocity filter SHIP (GSI, Darmstadt). The complex fine-structure α decay of two isomeric states in Au176 feeding several previously unknown excited states in the daughter nucleus Ir172 is presented. An α-decay branching ratio of bα=9.5(11)% was deduced for the high-spin isomer in Ir172

    Distinct phosphorylation requirements regulate cortactin activation by TirEPEC and its binding to N-WASP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Moreover, it was called the Achilles' heel of the actin cytoskeleton because many pathogens hijack signals that converge on this oncogenic scaffolding protein. Cortactin is able to modulate N-WASP activation <it>in vitro </it>in a phosphorylation-dependent fashion. Thus Erk-phosphorylated cortactin is efficient in activating N-WASP through its SH3 domain, while Src-phosphorylated cortactin is not. This could represent a switch on/off mechanism controlling the coordinated action of both nucleator promoting factors (NPFs). Pedestal formation by enteropathogenic <it>Escherichia coli </it>(EPEC) requires N-WASP activation. N-WASP is recruited by the cell adapter Nck which binds a major tyrosine-phosphorylated site of a bacterial injected effector, Tir (translocated intimin receptor). Tir-Nck-N-WASP axis defines the current major pathway to actin polymerization on pedestals. In addition, it was recently reported that EPEC induces tyrosine phosphorylation of cortactin.</p> <p>Results</p> <p>Here we demonstrate that cortactin phosphorylation is absent on N-WASP deficient cells, but is recovered by re-expression of N-WASP. We used purified recombinant cortactin and Tir proteins to demonstrate a direct interaction of both that promoted Arp2/3 complex-mediated actin polymerization <it>in vitro</it>, independently of cortactin phosphorylation.</p> <p>Conclusion</p> <p>We propose that cortactin binds Tir through its N-terminal part in a tyrosine and serine phosphorylation independent manner while SH3 domain binding and activation of N-WASP is regulated by tyrosine and serine mediated phosphorylation of cortactin. Therefore cortactin could act on Tir-Nck-N-WASP pathway and control a possible cycling activity of N-WASP underlying pedestal formation.</p

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    Mechanisms Suppressing Superheavy Element Yields in Cold Fusion Reactions

    Get PDF
    Superheavy elements are formed in fusion reactions which are hindered by fast nonequilibrium processes. To quantify these, mass-angle distributions and cross sections have been measured, at beam energies from below-barrier to 25% above, for the reactions of 48Ca,50Ti, and 54Cr with 208 Pb. Moving from 48Ca to 54Cr leads to a drastic fall in the symmetric fission yield, which is reflected in the measured mass-angle distribution by the presence of competing fast nonequilibrium deep inelastic and quasifission processes. These are responsible for reduction of the compound nucleus formation probablity PCN (as measured by the symmetric-peaked fission cross section), by a factor of 2.5 for 50Ti and 15 for 54Cr in comparison to 48 Ca. The energy dependence of PCN indicates that cold fusion reactions (involving 208Pb) are not driven by a diffusion process.The authors acknowledge the Australian Research Council for support through Discovery Grants No. DP140101337, No. DP160101254, No. DP170102318, No. FL110100098, and No. DE140100784. Financial support from the NCRIS HIA capability for operation of the Heavy Ion Accelerator Facility is acknowledged. The authors acknowledge the support of the German Academic Exchange Service (DAAD) via funds of the German Federal Ministry of Education and Research (BMBF)
    • 

    corecore