88 research outputs found

    Evaluation of Technology Concepts for Energy, Automation, and System State Awareness in Commercial Airline Flight Decks

    Get PDF
    A pilot-in-the-loop flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) provide guidance for recovery from low energy states and stalls, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. The study was conducted using 13 commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of complex conditions and several emulated causal and contributing factors found in recent accidents involving loss of state awareness by pilots (e.g., energy state, automation state, and/or system state). Three new technology concepts were evaluated while used in concert with current state-of-the-art flight deck systems and indicators. The technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indicator that shows when automation is no longer actively controlling airspeed, and enhanced synoptic pages designed to work with simplified interactive electronic checklists. An additional synoptic was developed to provide the flight crew with information about the effects of loss of flight critical data. Data was collected via questionnaires administered at the completion of flight scenarios, audio/video recordings, flight data, head and eye tracking data, pilot control inputs, and researcher observations. This paper presents findings derived from the questionnaire responses and subjective data measures including workload, situation awareness, usability, and acceptability as well as analyses of two low-energy flight events that resulted in near-stall conditions

    A Hybrid Sensor Based Backstepping Control Approach with its application to Fault-Tolerant Flight Control

    Full text link
    Recently, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov function based method uses measurements of control variables and less model knowledge, and it is not susceptible to the model uncertainty caused by fault scenarios. In this paper, the SBB method has been implemented on a fixed wing aircraft with its focus on handling structural changes caused by damages. A new hybrid autopilot flight controller has been developed for a Boeing 747-200 aircraft after combining nonlinear dynamic inversion (NDI) with SBB control approach. Two benchmarks for fault tolerant flight control (FTFC), named rudder runaway and engine separation, are employed to evaluate the proposed method. The simulation results show that the proposed control approach leads to a zero tracking-error performance in nominal condition and guarantees the stability of the closed-loop system under failures as long as the reference commands are located in the safe flight envelope

    E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines

    Get PDF
    Using genome-wide expression profiling of a panel of 27 human mammary cell lines with different mechanisms of E-cadherin inactivation, we evaluated the relationship between E-cadherin status and gene expression levels. Expression profiles of cell lines with E-cadherin (CDH1) promoter methylation were significantly different from those with CDH1 expression or, surprisingly, those with CDH1 truncating mutations. Furthermore, we found no significant differentially expressed genes between cell lines with wild-type and mutated CDH1. The expression profile complied with the fibroblastic morphology of the cell lines with promoter methylation, suggestive of epithelial-mesenchymal transition (EMT). All other lines, also the cases with CDH1 mutations, had epithelial features. Three non-tumorigenic mammary cell lines derived from normal breast epithelium also showed CDH1 promoter methylation, a fibroblastic phenotype and expression profile. We suggest that CDH1 promoter methylation, but not mutational inactivation, is part of an entire programme, resulting in EMT and increased invasiveness in breast cancer. The molecular events that are part of this programme can be inferred from the differentially expressed genes and include genes from the TGFbeta pathway, transcription factors involved in CDH1 regulation (i.e. ZFHX1B, SNAI2, but not SNAI1, TWIST), annexins, AP1/2 transcription factors and members of the actin and intermediate filament cytoskeleton organisation.Toxicolog

    ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: Absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of heterozygosity (LOH) at chromosome arm 16q is frequently observed in human breast cancer, suggesting that one or more target tumor suppressor genes (TSGs) are located there. However, detailed mapping of the smallest region of LOH has not yet resulted in the identification of a TSG at 16q. Therefore, the present study attempted to identify TSGs using an approach based on mRNA expression.</p> <p>Methods</p> <p>A cDNA microarray for the 16q region was constructed and analyzed using RNA samples from 39 breast tumors with known LOH status at 16q.</p> <p>Results</p> <p>Five genes were identified to show lower expression in tumors with LOH at 16q compared to tumors without LOH. The genes for NAD(P)H dehydrogenase quinone (<it>NQO1</it>) and AT-binding transcription factor 1 (<it>ATBF1</it>) were further investigated given their functions as potential TSGs. <it>NQO1 </it>has been implicated in carcinogenesis due to its role in quinone detoxification and in stabilization of p53. One inactive polymorphic variant of <it>NQO1 </it>encodes a product showing reduced enzymatic activity. However, we did not find preferential targeting of the active <it>NQO1 </it>allele in tumors with LOH at 16q. Immunohistochemical analysis of 354 invasive breast tumors revealed that NQO1 protein expression in a subset of breast tumors is higher than in normal epithelium, which contradicts its proposed role as a tumor suppressor gene.</p> <p><it>ATBF1 </it>has been suggested as a target for LOH at 16q in prostate cancer. We analyzed the entire coding sequence in 48 breast tumors, but did not identify somatic sequence changes. We did find several in-frame insertions and deletions, two variants of which were reported to be somatic pathogenic mutations in prostate cancer. Here, we show that these variants are also present in the germline in 2.5% of 550 breast cancer patients and 2.9% of 175 healthy controls. This indicates that the frequency of these variants is not increased in breast cancer patients. Moreover, there is no preferential LOH of the wildtype allele in breast tumors.</p> <p>Conclusion</p> <p>Two likely candidate TSGs at 16q in breast cancer, <it>NQO1 </it>and <it>ATBF1</it>, were identified here as showing reduced expression in tumors with 16q LOH, but further analysis indicated that they are not target genes of LOH. Furthermore, our results call into question the validity of the previously reported pathogenic variants of the <it>ATBF1 </it>gene.</p

    Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells

    Get PDF
    Cell-cell adhesion is an elementary process in normal epithelial cellular architecture. Several studies have shown the role mediated by cadherins in this process, besides their role in the maintenance of cell polarity, differentiation and cell growth. However, during tumour progression, these molecules are frequently altered. In breast cancer, tumours that overexpress P-cadherin usually present a high histological grade, show decreased cell polarity and are associated with worse patient survival. However, little is known about how this protein dictates the very aggressive behaviour of these tumours. To achieve this goal, we set up two breast cancer cell models, where P-cadherin expression was differently modulated and analysed in terms of cell invasion, motility and migration. We show that P-cadherin overexpression, in breast cancer cells with wild-type E-cadherin, promotes cell invasion, motility and migration. Moreover, we found that the overexpression of P-cadherin induces the secretion of matrix metalloproteases, specifically MMP-1 and MMP-2, which then lead to P-cadherin ectodomain cleavage. Further, we showed that soluble P-cadherin fragment is able to induce in vitro invasion of breast cancer cells. Overall, our results contribute to elucidate the mechanism underlying the invasive behaviour of P-cadherin expressing breast tumours.scientific project (POCI/BIA-BCM/59252/2004) financed by the Portuguese Science and Technology Foundation (FCT). FCT also provided research grants as follows: Programa Ciência 2007 (FCT) for Joana Paredes, and PhD research grants for Ana Sofia Ribeiro (SFRH/BD/36096/2007) and André Albergaria (SFRH/BD/15316/2005)

    DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p

    An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ

    Get PDF
    INTRODUCTION: Heparan sulphate proteoglycan syndecan-1 modulates cell proliferation, adhesion, migration and angiogenesis. It is a coreceptor for the hepatocyte growth factor receptor c-met, and its coexpression with E-cadherin is synchronously regulated during epithelial-mesenchymal transition. In breast cancer, changes in the expression of syndecan-1, E-cadherin and c-met correlate with poor prognosis. In this study we evaluated whether coexpression of these functionally linked prognostic markers constitutes an expression signature in ductal carcinoma in situ (DCIS) of the breast that may promote cell proliferation and (lymph)angiogenesis. METHODS: Expression of syndecan-1, E-cadherin and c-met was detected immunohistochemically using a tissue microarray in tumour specimens from 200 DCIS patients. Results were correlated with the expression patterns of angiogenic and lymphangiogenic markers. Coexpression of the three prognostic markers was evaluated in human breast cancer cells by confocal immunofluorescence microscopy and RT-PCR. RESULTS: Coexpression and membrane colocalization of the three markers was confirmed in MCF-7 cells. E-cadherin expression decreased, and c-met expression increased progressively in more aggressive cell lines. Tissue microarray analysis revealed strong positive staining of tumour cells for syndecan-1 in 72%, E-cadherin in 67.8% and c-met in 48.6% of DCIS. E-cadherin expression was significantly associated with c-met and syndecan-1. Expression of c-met and syndecan-1 was significantly more frequent in the subgroup of patients with pure DCIS than in those with DCIS and a coexisting invasive carcinoma. Levels of c-met and syndecan-1 expression were associated with HER2 expression. Expression of c-met significantly correlated with expression of endothelin A and B receptors, vascular endothelial growth factor (VEGF)-A and fibroblast growth factor receptor-1, whereas E-cadherin expression correlated significantly with endothelin A receptor, VEGF-A and VEGF-C staining. CONCLUSION: Syndecan-1, E-cadherin and c-met constitute a marker signature associated with angiogenic and lymphangiogenic factors in DCIS. This coexpression may reflect a state of parallel activation of different signal transduction pathways, promoting tumour cell proliferation and angiogenesis. Our findings have implications for future therapeutic approaches in terms of a multiple target approach, which may be useful early in breast cancer progression

    Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition

    Get PDF
    Induction of epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSCs) can occur as the result of embryonic pathway signaling. Activation of Hedgehog (Hh), Wnt, Notch, or transforming growth factor-β leads to the upregulation of a group of transcriptional factors that drive EMT. This process leads to the transformation of adhesive, non-mobile, epithelial-like tumor cells into cells with a mobile, invasive phenotype. CSCs and the EMT process are currently being investigated for the role they play in driving metastatic tumor formation in breast cancer. Both are very closely associated with embryonic signaling pathways that stimulate self-renewal properties of CSCs and EMT-inducing transcription factors. Understanding these mechanisms and embryonic signaling pathways may lead to new opportunities for developing therapeutic agents to help prevent metastasis in breast cancer. In this review, we examine embryonic signaling pathways, CSCs, and factors affecting EMT

    Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

    Get PDF
    Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis
    corecore