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Using genome-wide expression profiling of a panel of 27 human mammary cell lines with different mechanisms of E-cadherin
inactivation, we evaluated the relationship between E-cadherin status and gene expression levels. Expression profiles of cell lines with
E-cadherin (CDH1) promoter methylation were significantly different from those with CDH1 expression or, surprisingly, those with
CDH1 truncating mutations. Furthermore, we found no significant differentially expressed genes between cell lines with wild-type and
mutated CDH1. The expression profile complied with the fibroblastic morphology of the cell lines with promoter methylation,
suggestive of epithelial–mesenchymal transition (EMT). All other lines, also the cases with CDH1 mutations, had epithelial features.
Three non-tumorigenic mammary cell lines derived from normal breast epithelium also showed CDH1 promoter methylation, a
fibroblastic phenotype and expression profile. We suggest that CDH1 promoter methylation, but not mutational inactivation, is part
of an entire programme, resulting in EMT and increased invasiveness in breast cancer. The molecular events that are part of this
programme can be inferred from the differentially expressed genes and include genes from the TGFb pathway, transcription factors
involved in CDH1 regulation (i.e. ZFHX1B, SNAI2, but not SNAI1, TWIST), annexins, AP1/2 transcription factors and members of
the actin and intermediate filament cytoskeleton organisation.
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Decreased E-cadherin expression is associated with a more
aggressive behaviour of breast cancer (Siitonen et al, 1996). The
homotypic cellular adhesion molecule E-cadherin is a trans-
membrane glycoprotein important for the organisation of
epithelial structure (Takeichi, 1995; Huber et al, 1996; Yagi and
Takeichi, 2000). E-cadherin can form homophilic interactions with
E-cadherin molecules on neighbouring cells in a Ca2þ -dependent
way and is the main component of adherens junctions. By
recruitment of a- and b-catenin, the E-cadherin is anchored to the
actin cytoskeleton.

Mutational inactivation of CDH1 has been found in 56% of
lobular breast carcinomas (Berx et al, 1996) and 50% of diffuse
gastric carcinomas (Becker et al, 1994). In the first tumour type,
this is accompanied by loss of the wild-type allele (Berx et al,
1995). Complete loss of E-cadherin protein expression has been
found in 84% of lobular breast carcinomas (De Leeuw et al, 1997).
Loss of membranous E-cadherin expression results in a reduction
of adhesion between epithelial tumour cells and explains the

characteristic diffuse growth pattern observed in these tumours
(Berx et al, 1998). CDH1 mutations were also identified in lobular
carcinoma in situ, the putative precursor of invasive lobular
carcinoma (Vos et al, 1997). Thus, in addition to its role as an
invasion suppressor, E-cadherin also acts as a classical tumour
suppressor gene in pre-invasive lobular breast carcinoma. Besides
mutational inactivation of the E-cadherin gene, CDH1 may also be
targeted by promoter hypermethylation (Graff et al, 1995; Grady
et al, 2000; Tamura et al, 2000), thereby inhibiting CDH1 gene
expression. Evidence is accumulating for a prominent role of
epithelial-to-mesenchymal transition (EMT) in tumour progres-
sion (reviewed by Thiery, 2002). During early embryonic develop-
ment, E-cadherin is a critical switch in EMT. Upon downregulation
of E-cadherin, epithelial cells acquire a fibroblastic pheno-
type, dissociate from the epithelium and migrate. This process
is essential for gastrulation, neural crest formation, kidney
development and so on (reviewed by Thiery, 2003). Several
proteins have been identified that downregulate E-cadherin
expression including SNAI1/SNAIL (Batlle et al, 2000; Cano et al,
2000), ZFHX1B/SIP1 (Comijn et al, 2001), SNAI2/SLUG (Hajra
et al, 2002; De Craene et al, 2005), TWIST1 (Yang et al, 2004)
and DeltaEF1 (Eger et al, 2005). Altered expression of these
transcription factors seems to be also associated with an altered
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overexpression of transcriptional repressors of E-cadherin in
tumour cells (Batlle et al, 2000; Cano et al, 2000; Comijn et al, 2001;
Hajra et al, 2002; Yang et al, 2004; Eger et al, 2005). CDH1 gene
expression is upregulated by several factors, AML1, p300 and
HNF3 (Liu et al, 2005). Also post-transcriptional regulation of
E-cadherin has been observed and recently ADAM10 was
identified as the cleaving protease (Maretzky et al, 2005).

Given the relevance of E-cadherin in tumour development and
progression and the different mechanisms involved in its regulation,
we set out to use a genome-wide expression analysis to identify genes
or pathways in mammary epithelial cells that are either (in)directly
affected by loss of E-cadherin function or are altogether associated
with a (epi)genetic programme that determines the biological status
of cells: epithelial or mesenchymal. For this purpose, we performed a
gene expression profile study on 27 different breast mammary cell
lines with a known CDH1 mutation, promoter hypermethylation and
expression status. Remarkably, no significant differences in gene
expression were identified between breast cancer cell lines with wild-
type E-cadherin without promoter methylation and those harbouring
CDH1 truncating mutations. The results showed a marked difference
in expression profile between cell lines with CDH1 promoter
methylation compared to those with CDH1 mutational inactivation,
especially for genes involved in EMT and part of the TGFb pathway.

MATERIALS AND METHODS

Cell lines

The 27 breast and four colon cancer cell lines used in this study are
listed in Table 1. MPE600 and SK-BR-5 were provided by Dr F

Waldman (California Pacific Medical Centre, San Francisco, CA,
USA) and Dr E Stockert (Sloan-Kettering Institute for Cancer
Research, New York, NY, USA), respectively. Dr SP Ethier donated
SUM44PE (Ethier et al, 1993) and SUM185PE (Forozan et al, 1999).
OCUB-F was obtained from the Riken Gene Bank. Other cell lines
were obtained from the American Type Culture Collection. We
genotyped all cell lines using the Powerplex 1.2 system (Promega,
Leiden, The Netherlands) according to the manufacturer’s
instructions. All cell lines were grown in RPMI1640 medium
supplemented with 5 mM glutamine and 10% heat-inactivated fetal
calf serum at 371C under 5% CO2 (culture media from GIBCO
Invitrogen, Grand Island, NY, USA).

E-cadherin protein expression

Cells were grown until 80% confluence and lysed by adding 1 ml
hot lysis solution (1% SDS, 10 mM Tris pH 7.4, 10 mM EDTA,
supplemented with complete protease inhibitor (Boehringer
Mannheim)). Protein concentration was determined by the Biorad
DC Protein Assay (Biorad, Hercules, CA, USA). Western blots of
electrophoretically separated proteins (Winter et al, 2003) from
whole-cell lysates were probed with HECD-1 (Zymed Laboratories,
San Francisco, CA, USA) antibodies to detect E-cadherin (diluted
1 : 1000). Control blots were probed with anti-b-actin (1 : 500)
(Sigma, St Louis, MO, USA). Anti-mouse IgG peroxidase
conjugates (Transduction Laboratories, Lexington, KY, USA) were
used as secondary antibodies, and the blots were developed for
1 min using the enhanced chemiluminescent detection system
(Amersham Int., Little Chalfont, UK). Exposure time was 1 min.
Membranous E-cadherin expression was analysed using HECD-1

Table 1 Cell lines used in this study

Cell line(source) Tissue
Tumour
type

Genotype
confirmation

CDH1 promoter
methylation

Protein
expression

CDH1
mutation(9) QPCRa

Flow index
MESF

BT474(1) Breast IDC + � + 192.7
BT483(1) Breast IDC NIA � 226.6
BT549(1) Breast PIDC NIA 7 � 3.2
CAMA1(1) Breast C +(7) � + + 23.9 17
Du4475(1) Breast IDC + � + � 24.5
HBL100(1) Breast Normal(8) NIA(8) + � 0.0
Hs578T(1) Breast CS + 7 � � 0.0 0
MCF10A(1) Breast Normal 7 1.0
MCF10F(1) Breast Normal + 7 � 0.3
MCF12A(1) Breast Normal + 7 10.7
MCF7(1) Breast IDC + � + � 201.8 47
MDA-MB-134 VI(1) Breast IDC + � � + 3.8
MDA-MB-175 VII(1) Breast IDC + � + � 281.1
MDA-MB-231(1) Breast IDC + 7 7 � 30.3 18
MDA-MB-231*(6) Breast IDC (6) 7 � 0.3
MDA-MB-330(1) Breast IDC + � + � 99.1
MDA-MB-361(1) Breast AC + � + � 243.6
MDA-MB-435s(1) Breast IDC + + � 0.0 0
MDA-MB-453(1) Breast AC + � � 6.8
MPE600(2) Breast C NIA � + + 96.2 108
OCUB-F(3) Breast C NIA � � + 75.7
SK-BR-3(1) Breast IDC + Del � + 0.1 0
SK-BR-5(4) Breast C NIA � � + 20.1 0
SUM185PE(5) Breast NIA � + 131.2
SUM44PE(5) Breast ILC NIA � � + 5.4
T47D(1) Breast IDC + � + � 97.2 121
ZR75-1(1) Breast IDC + � + � 284.8 103
LS180(1) Colorectal AC �
LS411N(1) Colorectal C �
SW480(1) Colorectal AC �
SW837(1) Rectal AC �
(1)American Tissue Type Collection (ATCC); (2)Dr F Waldman; (3)Riken Gene Bank; (4)Dr E Stockert; (5)Dr S Ethier; (6)a clone spontaneously derived from MDA-MD-231 lacking
allele 8 of TPOX; (7)lost the 9.3 allele of THO1; (8)HBL100 was originally isolated from a healthy female; however, it turned out to have a Y chromosome; (9)after van de
Wetering et al. (2001). aNormalised real-time PCR SQ values for CDH1 expression; IDC¼ invasive ductal carcinoma; PIDC¼ papillary invasive ductal carcinoma; C¼ carcinoma;
CS¼ carcinosarcoma; ILC¼ invasive lobular carcinoma; AC¼ adenocarcinoma; NIA¼ no information available; (blank)¼ not determined; Del¼ promoter deletion.
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by flow cytometry of viable cells as described previously (Corver
et al, 1994). In brief, 1 mg of HECD1 was used to label the cells. For
each sample, measurements from 20 000 single cells were collected
using a standard FACSCaliburt flow cytometer (BD Biosciences,
San Diego, CA, USA). Data were analysed using WinList 5.0
software (Verity Software House Inc., Topsham, ME, USA).

Methylation-specific PCR

CDH1 promoter methylation was determined as described by
Herman et al (1996). Modification of DNA before PCR was carried
out with the EZ Methylation Kitt (Zymo Research, Orange, CA,
USA) according to the manufacturer’s instructions. Methylation-
specific fragments were sequenced to determine methylation of
CpGs between the primer binding sites. As a control for efficient
modification, we used primers for fragments of CDH3 and TERF2,
flanking CDH1, which do not contain CpGs and exclusively
amplified modified DNA (primer sequences and PCR conditions
are available upon request).

RNA isolation

When cell cultures reached 70–80% confluence, RNA was isolated
using TRIzol (Invitrogen Life Technologies Breda, The Nether-
lands) and purified using Qiagen RNeasy mini kit columns (Qiagen
Sciences, Germantown, MD, USA). Samples were DNase treated
using the Qiagen RNase-free DNase kit (Qiagen). The isolation and
purification were carried out according to the manufacturer’s
instructions.

cDNA microarrays

cDNA clones were amplified to generate PCR products for the
cDNA microarray from a sequence verified clone collection
(Research Genetics, Invitrogen, Huntsville, AL, USA). Apart from
these clones, cDNAs related to adhesion, cytoskeleton and
carcinogenesis were selected. These additional clones were
obtained from the Deutsches Krebsforschungszentrum (Deutsches
Ressourcenzentrum für Genomforschung, Berlin, Germany) or
created by performing an RT–PCR (reverse transcriptase) reaction
on RNA from mammary cell lines. Subsequently, these PCR
products were cloned using the TOPO TA cloning kit (Invitrogen,
Carlsbad, CA, USA). All plasmid inserts were PCR amplified using
plasmid-specific primers.

Purified PCR products, in 3� SSC buffer, were spotted in
duplicate on MicroMax SuperChipt I slides (Perkin-Elmer Life
Science, Boston, MA, USA) at the Leiden Genome Technology
Center (http://www.lgtc.nl/) using the OmniGrid 100 robot
(GeneMachines, San Carlos, CA, USA). In total, 9216 PCR
products, including ‘landing marks’, consisting of biotin- and
fluorescein-labelled PCR products to facilitate spot identification,
were spotted in duplicate on each slide.

cDNA labelling and hybridisation

For cDNA labelling and signal amplification, we used the tyramide
signal amplification (TSA) kit (Perkin-Elmer Life Science, Boston,
MA, USA) according to the manufacturer’s instructions with
minor modification. A 1 mg portion of RNA was used to generate
biotin- or fluorescein-labelled cDNA. In general, cell line cDNA
was labelled with fluorescein (Cy3) whereas reference cDNA was
labelled with biotin (Cy5). This reference RNA consists of RNA
isolated from several human tumour cell lines (HL-60, K562, NCI-
H226, COLO205, SNB-19, LOX-IMVI, OVCAR-3, OVCAR-4, CAK-
IPC-3, MCF7, Hs578 T, MCF10F, MCF12A, OUMS27 and SW1353),
analogous to the panel described by Ross et al (2000). Labelled
cDNA was purified on YM-30 Microcon columns (Millipore
Corporation, Bedford, MA, USA), dissolved in the hybridisation

buffer and applied to cDNA arrays. Slides were hybridised
overnight at 651C in Corning Hybridization Chambers (Corning,
NY, USA). The TSA reaction and washing of the slides was carried
out using ThermoShandon Coverplates (http://www.thermo.com/).

Data analysis

Microarrays were scanned using the GeneTAC LSIV laser scanner
(Genomic Solutions, Ann Arbor, MI, USA). Each slide was scanned
at two different gain settings, namely, a low gain to avoid detector
saturation by high-amplitude signals and high gain to improve
signal detection from weakly expressed genes. This approach
provides a larger dynamic range of signal detection. Fluorescent
spots were detected and quantified using GenePix Pro 3.0 software
(Axon Instruments Inc., Union City, CA, USA). An MS-Excel
macro was created for automated spot selection. This enables
exclusion of saturated spots and spots with a signal below the
threshold. The remaining spots were corrected for local back-
ground noise. The intensity for both dyes of each spot was
normalised to the median of all spots on the array. For each spot,
the ratio of the sample to the reference was calculated. For spots
measured both at high gain and low gain, ratios were averaged.
Finally, ratios were log 10-transformed.

Unsupervised cluster analysis (using the options ‘Complete
linkage’ and ‘Correlation’) was made on log 10-transformed ratios
with Cluster 2.12 (Eisen et al, 1998) and visualised using Treeview
1.6 (MB Eisen, http://rana.lbl.gov/index.htm). For the identifica-
tion of differentially expressed genes, R version 1.9.0 (http://
www.R-project.org/) (R Development Core Team, 2004) using the
Limma (linear models for microarray data) package of Biocon-
ductor (http://www.bioconductor.org/) was applied. Limma is a
moderated T-statistic that detects differentially expressed genes
between groups given the natural variance within these groups,
corrected for false discovery rate due to multiple testing
(Wettenhall and Smyth, 2004). Cluster analysis was made for
genes yielding a signal in at least 90% of the samples. Independent
hybridisations including dye-swaps of the same sample generally
clustered together; therefore, we averaged experimental data for
every cell line. Furthermore, we averaged ratios of duplicate spots
on the array to improve significance. Differentially expressed genes
were determined for cDNAs that gave a signal in at least 80% of the
samples.

To test reproducibility of hybridisation and data acquisition,
duplicate or triplicate microarray hybridisations were performed
for 13 of the 31 cell lines, and seven dye-swap experiments. As the
results of the duplicate or triplicate array hybridisations of the
same cell line are highly similar, these are averaged as well as
duplicate spots.

Real-time PCR

Quantitative real-time PCR (qPCR) was performed to verify results
found by the cDNA microarray analysis and examine the
expression profile of candidate genes (Table 4). Primers
were developed with the Beacon Designer 3 software (Premier
Biosoft International, Palo Alto, CA, USA). Primer sequences
and PCR conditions are available upon request. Reactions
were performed using qPCR Corekits for SybrGreen or TAQman
probes (Eurogentec, Seraing, Belgium). Cycle threshold (Ct)
and starting quantities (SQ) were determined using the Biorad
iCycler software (Biorad, Hercules, CA, USA). Ct and SQ
values were normalised to the expression levels of three house-
keeping genes, HNRPM, CPSF6 and TBP, selected from the
microarray results as being stably expressed (Van Wezel et al,
2005), using the geNorm program (Vandesompele et al, 2002).
Statistical analysis (ANOVA) was carried out using SPSS 10.0
(SPSS Inc., Chicago, IL, USA).
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RESULTS

Cell line characterisation

All breast cell lines were genotyped to verify their identity. For 18
cell lines, results could be verified by data available from the ATCC
(http://www.atcc.org). Only for CAMA1, we were unable to identify
the 9.3 allele of THO1 on chromosome 11p15.5. Although for six
cell lines no genotypes of the loci tested with the Powerplex kit
were available, all had a unique profile. The MDA-MB-231* cell
line is a derivative of MDA-MB-231 that spontaneously arose in
our laboratory. Both genotypes are identical except the loss of
allele 8 of TPOX in MDA-MD-231*. Mutations in the DNA
sequence of the CDH1 gene have been reported previously (van de
Wetering et al, 2001).

CDH1 promoter methylation status was verified by methylation-
specific PCR (MSP) (Figure 1A) (Graff et al, 1995; Herman et al,
1996; Hiraguri et al, 1998; Paz et al, 2003). Three different patterns
were identified: (i) Complete promoter hypermethylation (cell
lines HBL100 and MDA-MB-435s); (ii) partial promoter methyla-
tion (cell lines BT549, Hs578T, MDA-MB-231, MDA-MB-231*,
MCF10F and MCF12A) and (iii) no promoter methylation in all
other cell lines. Partial methylation indicates that not all CpGs in a
promoter region are methylated, as reported previously (Lom-
baerts et al, 2004). This has been established by sequencing of the
PCR products. The results are in agreement with published data

for cell lines showing either complete or no promoter methylation.
Cell lines showing partial promoter methylation (BT549 and
MDA-MB-231) were previously reported as ‘methylated’ (Graff
et al, 1995; Herman et al, 1996; Paz et al, 2003) without further
specification. The partial CDH1 promoter methylation of MCF10F
and MCF12A was not published previously.

Western blotting of lysates of 28 cell lines confirmed the
published presence or absence of E-cadherin protein expression
(Sommers et al, 1994b; Hiraguri et al, 1998; Oberst et al, 2001; van
de Wetering et al, 2001) (Figure 1B and Table 1).

Using flow cytometry on a subset of 11 cell lines, we detected
membranous E-cadherin expression in five cell lines whereas six
cell lines were negative (Figure 1C and Table 1). Highest
expression was found for ZR75-1, MPE600 and T47D. These
results were in agreement with those from Western blotting.
The MDA-MB-231 cell line showed no E-cadherin expression by
Western blotting (Figure 1B); however, the flow cytometric
results on MDA-MB-231 indicated the presence of two subpopula-
tions, one lacking E-cadherin protein and a weakly positive one
(MESF value 18) (Figure 1C), apparently too weak to be detected
by Western blot. Methylation-specific PCR analysis suggested
partial promoter methylation (Figure 1A). Possibly, promoter
methylation in this cell line is dynamic and reversible. This is
illustrated by the lower mRNA level in a derivative of this cell line,
MDA-MB-231* (Table 4), and it is corroborated by recent findings
(Kang et al, 2003) where subpopulations were selected from
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Figure 1 Verification of CDH1 status in mammary cell lines. (A) Methylation-specific PCR. M¼MSP specific for methylated CDH1 promoter, U¼MSP
specific for unmethylated CDH1 promoter, CDH3 and Terf2¼ control PCR fragments for integrity and modification of template DNA. (B) Western blot
analysis for E-cadherin protein expression; b-actin is a loading control. (C) Fluorescence-activated cell sorting analysis for E-cadherin protein expression:
overlay of control (white), without antibody and test (black), grey indicates overlap between control and test. The y-axis shows the number of cells and the
x-axis the fluorescence of cells.
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MDA-MB-231 cells with different metastatic propensities. This
plasticity of the CDH1 promoter has been observed previously
(Graff et al, 2000).

The results on methylation status were in agreement with
the protein expression data. Cell lines showing partial or complete
promoter methylation lacked E-cadherin protein expression,
with the exception of MDA-MB-231. Although the methylation
profile was similar to that of other cell lines showing partial
methylation (BT549, MCF10F and MCF12A), flow cytometry
showed weak membranous protein expression in a subpopulation
of the cells. For SK-BR-3, we could not detect a fragment in
the MSP analysis. In order to verify the quality of DNA
modification, we performed a PCR on modified DNA with primers
specific for two fragments flanking CDH1. As PCR fragments were
obtained for both flanking genes, a homozygous deletion of the
DNA containing the CDH1 promoter is likely. This result is in
discordance with the reported loss of only exons 2–12 (van de
Wetering et al, 2001).

Cluster analysis

Unsupervised cluster analysis of all cell lines identified two main
clusters (Figure 2). Cluster 1 contains cell lines with a fibroblastic
morphology, whereas the cluster 2 includes cell lines with a more
or less epithelial appearance (Figure 3). The ‘Fibroblastic’ cluster
includes two subclusters: 1A includes the breast cancer cell lines
BT549, HBL100, Hs578T, MDA-MB-231, MDA-MB-231* and
MDA-MB-435s, which all show CDH1 promoter methylation
and are oestrogen receptor negative (ER�). Remarkably, cluster
1B (‘Fibroblastic-Normal’) contains three cell lines derived

from normal breast tissue (MCF10A, MCF10F and MCF12A).
Cluster 2, containing cell lines with an epithelial morphology,
is divided into three subclusters. 2A (‘Epithelial-Ecad-expressing’)
contains the cell lines BT483, BT474, MCF7, MDA-MB-175VII,
MDA-MB-330, MDA-MB-361, MDA-MB-453, T47D and
ZR75-1, with wild type CDH1 and two cell lines with CDH1
mutations, CAMA1 and MPE600. Cluster 2A includes eight ERþ

cell lines and two ER� cell lines. Interestingly, CAMA1 and
MPE600 carry in-frame CDH1 exon deletions (van de Wetering
et al, 2001) and show membrane-bound E-cadherin protein
expression in our flow cytometry analysis (Figure 1C). Thus,
all cell lines in this cluster express E-cadherin protein, but
interestingly, the size of the altered protein of MPE600 is
larger than normal E-cadherin, suggesting a failure in the removal
of the signal peptide. Cluster 2B (‘Epithelial-CDH1-mutated’)
includes all breast cancer cell lines harbouring inactivating
CDH1 mutations (MDA-MB-134VI, SK-BR-3, SK-BR-5, SUM44PE
and OCUB-F) and two cell lines with wild-type CDH1, SUM185PE
and Du4475. 2B includes two ER� and one ERþ cell line. Both
Ocub-F and Du4475 grow in suspension, but no deviating growth
pattern was observed for SUM185PE. Cluster 2C (‘Epithelial-
Rectal’) contains cell lines derived from (colo-) rectal tumours
(LS180, LS411N, SW480 and SW837). The separation of the
colorectal cell lines validates the resolving power of the microarray
method.

Differentially expressed genes

To identify differentially expressed genes associated with differ-
ences in E-cadherin expression, we first compared the seven breast
tumour cell lines in the ‘Epithelial’ cluster with CDH1 mutations
with 12 harbouring wild-type CDH1 from the same cluster.
Remarkably, we did not identify any significant differentially
expressed genes using the Limma package. As CAMA1 and
MPE600 harbour a mutation in the CDH1 gene but still express
E-cadherin, we next removed CAMA1 and MPE600 from this
analysis. Also, this comparison did not yield any differentially
expressed genes (data not shown).

Next, we compared the 18 breast tumour cell lines from the
‘Epithelial’ cluster with those from the ‘Fibroblastic’ cluster. We
identified 121 clones showing a highly significant difference in
expression (false discovery rate (FDR) o0.01), whereas an
additional 187 clones showed differential expression at a lower
level of significance (0.01pFDRo0.05). Twenty-eight genes were
represented by two or more clones in this list. In total, we
identified 273 genes that were significantly up- or downregulated
in cell lines with a CDH1 promoter methylation vs cell lines

Epithelial Fibroblastic
12

2B 2A
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expressing

CDH1
mutations

Rectal Normal Tumour

Figure 3 Morphology of representative cell lines in the different clusters. Cluster 1A is represented by MDA-MB-435, 1B by MCF10A, 2A by SKBR3, 2B
by MCF7 and 2C by SW480.
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(1), including tumour (1A) and ‘normal’ mammary cell lines (1B).
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without promoter methylation (FDRo0.05). Table 2 shows the top
10 up- and downregulated genes based on the false discovery rate.
Table 3 shows a subset of genes that are of particular interest
because they are involved in the TGFb pathway, EMT control or
cytoskeletal (re)organisation.

Real-time PCR

Quantitative PCR was performed to validate cDNA micro-
array expression data for six differentially expressed genes
(CTNNB1, CDH1, ELF3, FN1, FOSL1 and TGFB1; see Table 4).
The correlation between results from the microarray and qPCR
was highly significant (Figure 4). The microarray expression
data led us to hypothesise that breast cell lines with CDH1
promoter methylation all have undergone EMT. To verify this, we
also performed qPCR for genes that are involved in the regulation
of CDH1 expression (TWIST1, ZFHX1B, SNAI1 and SNAI2) or (a
marker for) EMT (ILK, VIM and SERPINE1), but could not be
evaluated on the array because of poor hybridisation results or
absence.

As determined by one-way ANOVA, the normalised starting
quantity, a measure for the amount of mRNA in the sample,
differed significantly between tumour cell lines with CDH1
promoter methylation with a fibroblastic morphology (‘Fibroblas-
tic-Tumour’ cluster) and epithelial breast cancer cell lines
(‘Epithelial-Ecad-Expressing’ and ‘Epithelial-CDH1-Mutated’ clus-
ters) for several genes (Table 4). CDH1 and ELF3 were expressed at
a significantly higher level in cells with an epithelial morphology,
whereas FN1, FOSL1, VIM, ZFHX1B, SNAI2, SERPINE1 and TFGB1
showed a higher expression in fibroblastic breast tumour cells
(Table 4 and Figure 5).

Cell lines in the ‘Epithelial-Ecad-Expressing’ subcluster showed
considerable variation in CDH1 expression, with higher expression
levels predominantly in the ERþ cell lines. Remarkably, the
highest levels of ELF3 expression were identified in both SK-BR-3
and SK-BR-5 cell lines.

Several cell lines within the ‘Fibroblastic-Tumour’ subcluster
show high expression of TWIST1, particularly BT549 and MDA-
MB-435s, but for the whole group the results did not differ
significantly from those of the epithelial cluster. Of the ‘Epithelial’
cluster, SUM44PE, which was originally derived from a lobular

carcinoma (Ethier et al, 1993; van de Wetering et al, 2001), showed
the highest expression. Remarkably, cell lines derived from normal
breast epithelial cells, MCF10A, MCF10F and MCF12A, showed
very high expression levels of FN1, SERPINE1, ZFHX1B, SNAI2,
TGFB1, TWIST1 and VIM and low values for CDH1 and ELF3,
which is comparable to expression data from cell lines in the
‘Fibroblastic-Tumour’ subcluster.

DISCUSSION

Alterations in E-cadherin are an important event in carcinogenesis;
however, there is controversy about the corollary of the type
of E-cadherin inactivation (mutation or promoter hypermethyla-
tion) and the aggressiveness of tumour cells. In view of its function
in adhesion, it is considered as an invasion suppressor, which
is indeed corroborated by in vitro experiments (Vleminckx
et al, 1991). Nevertheless, mutational inactivation is already
identified in pre-invasive lobular carcinoma in situ (Vos et al,
1997), thereby supporting a role in early carcinogenesis instead
of invasive capacity. In order to identify pathways that are
affected by E-cadherin inactivation, we performed a genome-wide
expression study on 27 human mammary cell lines, which are
well characterised on E-cadherin RNA and protein expression
status.

Cluster analysis of the microarray data identified two
main clusters that coincide with the epithelial and fibroblastic
phenotype of the cells, respectively. Importantly, the ‘Fibroblastic’
cluster included only cell lines with either partial or complete
CDH1 promoter methylation. This contrasts with the ‘Epithelial’
cluster that included cell lines with wild-type as well as cell
lines with mutant CDH1 status. Based on published data on
in vitro invasion assays, cellular phenotype and gene expression
profiles, Lacroix and Leclercq, (2004) classified breast cancer
cell lines into three groups: luminal epithelial, weakly luminal
epithelial and ‘mesenchymal’ or ‘stromal’ like. In our analyses, all
cell lines belonging to both the luminal and weakly epi-
thelial luminal type group into the ‘Epithelial’ cluster. The
position of colorectal tumour cell lines as ‘epithelial’ subcluster
rather than forming an out-group suggests that the origin of
these cells is subordinate to the phenotype (epithelial or

Table 2 Top 10 upregulated (41) and downregulated (o1) genes in the ‘Fibroblastic-Tumour’ cluster when compared with breast tumour cell lines in
the ‘Epithelial’ cluster

Symbol Name Locus ID Fold Change P-value Keyword

FOSL1 FOS-like antigen 1 8061 692 1.03E�07 Transcription factor
GBE1 Glucan (1,4-alpha-) branching enzyme 1 2632 9.77 6.09E�07 Sucrose metabolism
MMP15 Matrix metalloproteinase 15 4324 9.55 2.83E�06 Matrix degradation
AMPD1 Adenosine monophosphate deaminase 1 270 7.94 3.27E�06 Purine metabolism
COL4A2 Collagen type IV alpha 2 1284 36.3 1.31E�05 Matrix
ACADL Acyl-coenzyme A dehydrogenase long chain 33 72.4 1.32E�05 Fatty acid metabolism
PLAUR Plasminogen activator, urokinase receptor 5329 43.6 2.99E�05 Matrix degradation
AXL AXL receptor tyrosine kinase 558 11.8 2.99E�05
PHLDA1 Pleckstrin homology-like domain family A member 1 22822 13.2 3.56E�05
ANXA5 Annexin A5 308 5.62 3.65E�05
IGFBP2* Insulin-like growth factor binding protein 2 3485 0.00371 1.27E�05 IGFBP
ST14* Suppression of tumorigenicity 14 6768 0.0110 1.27E�05 Serine protease
TFDP2 Transcription factor Dp-2 7029 0.0355 2.58E�05 Transcription factor
XBP1 X-box binding protein 1 7494 0.0302 2.61E�05 Transcription factor
KRT13 Keratin 13 3860 0.0195 3.65E�05 Cytoskeleton
KIAA0089 KIAA0089 23171 0.170 7.60E�05 unknown
ELF3 E74-like factor 3 1999 0.0263 1.20E�04 Transcription factor
FXYD3 FXYD domain containing ion transport regulator 3 5349 0.0107 1.24E�04 Ion transport
KRT14 Keratin 14 3861 0.0195 1.24E�04 Cytoskeleton
IL1RN Interleukin 1 receptor antagonist 3557 0.0933 1.24E�04

*Genes also identified by Lacroix and Leclerq.
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Table 3 Selection of differentially expressed genes involved in TGFb, matrix remodelling and cytoskeleton

Symbol Name Locus ID Fold change P Up or down Group

VEGFC Vascular endothelial growth factor C 7424 30.9 2.42E�02 Up Angiogenesis
PLOD2 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 5352 6.17 2.96E�02 Up Angiogenesis
STC1 Stanniocalcin 1 6781 12.0 2.35E�03 Up Angiogenesis
SPARC Secreted protein, acidic, cysteine-rich 6678 28.2 2.57E�02 Up AP1 target
CSF1* Colony stimulating factor 1 1435 102 6.36E�05 Up Cytokine
ITGB1 Integrin, beta 1 3688 5.13 2.03E�02 Up Cytoskeleton
RAC2 Ras-related C3 botulinum toxin substrate 2 5880 6.76 1.59E�02 Up Cytoskeleton
KRT7 Keratin 7 3855 0.0602 1.97E�02 Down Cytoskeleton
KRT8 Keratin 8 3856 0.0251 5.38E�04 Down Cytoskeleton
KRT19 Keratin 19 3880 0.00891 3.10E�04 Down Cytoskeleton
RHOB Ras homolog gene family, member B 388 0.0589 9.87E�03 Down Cytoskeleton
ARHD Ras homolog gene family, member D 29984 0.0871 3.42E�02 Down Cytoskeleton
DSP* Desmoplakin 1832 0.0631 1.22E�03 Down Cytoskeleton/adhesion
CAV1 Caveolin 1 857 126 3.65E�05 Up Cytoskeleton/adhesion
CAV2 Caveolin 2 858 10.7 1.50E�03 Up Cytoskeleton/adhesion
CD44 CD44 antigen 960 51.3 5.27E�05 Up Cytoskeleton/adhesion
FN1 Fibronectin 1 2335 17.4 2.36E�03 Up Cytoskeleton/adhesion
MSN Moesin 4478 115 1.26E�04 Up Cytoskeleton/adhesion
S100A2 S100 calcium binding protein A2 6273 5.50 4.72E�02 Up Cytoskeleton/adhesion
S100A3 S100 calcium binding protein A3 6274 7.41 1.08E�02 Up Cytoskeleton/adhesion
CDH1* E-cadherin 999 0.0589 2.82E�02 Down Cytoskeleton/adhesion
MAPK1 Mitogen-activated protein kinase 1 5594 54.9 1.69E�03 Up MAPK
COL5A1 Collagen type V alpha 1 1289 8.32 1.58E�02 Up Matrix
COL15A1 Collagen type XV alpha 1 1306 3.31 3.94E�02 Up Matrix
BMP1 Bone morphogenetic protein 1 649 9.55 1.85E�02 Up Matrix degradation
MMP2 Matrix metalloproteinase 2 4313 27.5 9.29E�03 Up Matrix degradation
MMP3 Matrix metalloproteinase 3 4314 2.45 4.81E�02 Up Matrix degradation
MMP14* Matrix metalloproteinase 14 4323 53.7 5.27E�05 Up Matrix degradation
PLAU* Plasminogen activator, urokinase 5328 14.45 3.32E�03 Up Matrix degradation
SERPINE1* Serine or cysteine proteinase inhibitor member 1 5054 19.1 1.44E�02 Up Matrix degradation
SERPINE2 Serine or cysteine proteinase inhibitor member 2 5270 759 1.40E�04 Up Matrix degradation
TPD52* Tumor protein D52 7163 0.25 1.86E�02 Down Morphogenesis
ANXA1 Annexin A1 301 6.31 3.82E�05 Up Phospho-lipid binding
ANXA5 Annexin A5 244 5.75 3.66E�05 Up Phospho-lipid binding
ANXA8 Annexin A8 244 3.09 3.24E�02 Up Phospho-lipid binding
TGFB1 Transforming growth factor beta 1 7040 11.8 3.76E�02 Up TGFbeta
TGFB2 Transforming growth factor beta 2 7042 23.4 1.50E�03 Up TGFbeta
TGFBR2 Transforming growth factor beta receptor II 7048 11.2 9.56E�04 Up TGFbeta
FST Follistatin 10468 11.5 6.41E�04 Up TGFbeta
FOSB FBJ murine osteosarcoma viral oncogene homolog B 2354 2.24 4.47E�02 Up Transcription factor
TFAP2A Transcription factor AP-2 alpha 7020 0.224 2.29E�03 Down Transcription factor
TFAP2C* Transcription factor AP-2 gamma 7022 0.144 3.58E�02 Down Transcription factor
MDM2* Mouse double minute 2 homolog isoform 4193 0.380 5.59E�03 Down Ubiquitination

Up indicates upregulated in the ‘fibroblastic’ cell lines. *Genes also identified by Lacroix and Leclerq.

Table 4 Quantitative RT–PCR data

Symbol Name Locus ID Fold change P-value Up or down Keyword

CPSF6 Cleavage and polyadenylation specific factor 6 11052 0.98 7.15E�01 NS Housekeeping gene
HNRPM Heterogeneous nuclear ribonucleoprotein M 4670 1.0 1.00E+00 NS Housekeeping gene
TBP TATA box binding protein 6908 1.0 1.00E+00 NS Housekeeping gene
CTNNB1 Catenin beta 1 1499 1.1 1.00E+00 NS Adhesion and transcription factor
SNAI1 Snail homolog 1 6515 1.3 1.00E+00 NS Transcription repressor
TWIST1 Twist homolog 1 7291 1.7 1.00E+00 NS Transcription repressor
ILK Integrin-linked kinase 3611 1.26 9.50E�02 NS TGFbeta
TFGB1 Transforming growth factor beta 7040 2.0 1.50E�02 Up TGFbeta
SERPINE1 Serine or cysteine proteinase inhibitor 5054 5.1 3.00E�03 Up Matrix degradation
FN1 Fibronectin 1 2335 2.8 2.00E�03 Up Mesenchymal marker
FOSL1 FOS-like antigen 1 8061 2.4 0.00E+00 Up Transcription factor
SNAI2* Snail homolog 2, slug 6591 12 0.00E+00 Up Transcription repressor
VIM* Vimentin 7431 12 0.00E+00 Up Mesenchymal marker
ZFHX1B Zinc finger homeobox 1b, sip1 9839 8.9 0.00E+00 Up Transcription repressor
CDH1 E-cadherin 999 0.15 0.00E+00 Down Cytoskeleton/adhesion
ELF3 E74-like factor 3 1999 0.24 0.00E+00 Down Transcription factor

Up indicates upregulated in the ‘fibroblastic’ cell lines. NS¼ not significant. *Genes also identified by Lacroix and Leclerq.
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fibroblastic), underscoring the large phenotypic differences
induced by EMT.

The fibroblastic phenotype of the cell lines in the latter cluster is
strongly indicative of EMT. This is also supported by the increased
invasiveness of these cell lines (BT549, Hs578T, MDA-MB-231 and
MDA-MB-435s) in vitro and their metastatic potential in mouse
models (Price et al, 1990; Thompson et al, 1992; Sommers et al,
1994a). Lacroix and Leclercq (2004) identified 72 differentially
expressed genes between the (weakly) luminal epithelial and
mesenchymal cell lines of which 15 genes (21%) coincide with
differentially expressed genes in our ‘Epithelial’ vs ‘Fibroblastic’
cluster and are indicated in Tables 2–4 with an asterisk. The
finding that the three non-tumorigenic mammary cell lines derived
from normal epithelium form a cluster close to the fibroblastic
tumour cell lines is remarkable. However, given their fibroblastic
morphology and the CDH1 promoter methylation, this is not
unexpected.

Our observation that EMT only occurs in breast cancer cell
lines with CDH1 promoter hypermethylation and not with a
CDH1 mutational inactivation questions the presumed central
role of E-cadherin loss as the initial or primary cause for
EMT. This is furthermore illustrated by the surprising lack of
significantly differentially expressed genes when comparing
cell lines with wild-type and mutant CDH1. It strongly
suggests that E-cadherin transcriptional inactivation is an epi-
phenomenon and part of an entire programme, with much more
severe effects than loss of E-cadherin expression alone. The genes
that are involved in this programme can be inferred from the
significantly differentially expressed genes when comparing
‘Fibroblastic’ and ‘Epithelial’ cell lines. Two of the identified
upregulated genes are upstream repressors of CDH1 transcription,
thereby emphasising that E-cadherin itself is not the initiating
event in this programme.

We identified 273 differentially expressed genes between
breast cancer cell lines in the ‘Epithelial’ vs the ‘Fibroblastic’
cluster, underscoring that these two phenotypes are highly
different (Lacroix and Leclercq, 2004). We hypothesise
that mutational inactivation is selected for early in carcinogenesis
and results in increased growth. In contrast, the transcriptional
inactivation by promoter methylation seems part of a larger
programme directed towards EMT, thereby increasing invasive
and tumorigenic capacity or providing normal epithelial cells
with the propensity to divide infinitely in culture as can be
inferred from cluster 1B. The TGFb pathway and furthermore

transcription factors that regulate E-cadherin (ZFHX1B
and SNAI2), FOSL1 and other AP1/AP2 transcription factors,
members of cytoskeleton organisation, IGFBPs, caveolae
components, annexins and the AXL receptor tyrosine kinase seem
part of such a programme. Further below we will discuss how the
major groups of gene products that differentiate the ‘Fibroblastic’
and ‘Epithelial’ breast tumour cell line fit in the this EMT
paradigm.

The increased expression of several genes involved in the TGFb
pathway in the ‘Fibroblastic’ cluster, that is, TGFb1, TGFb2 and
their receptor TGFbR2, is in agreement with the important role of
this pathway in the induction of EMT (Thiery, 2003 and references
therein). Furthermore, one of the known downstream targets of the
TGFb pathway is ZFHX1B/SIP1, which is a direct repressor of
CDH1 (Comijn et al, 2001). Another transcriptional repressor of
CDH1, SNAI2/SLUG, a downstream target of the cKIT pathway
(Perez-Losada et al, 2002), is also significantly upregulated in the
‘Fibroblastic’ cluster, suggesting that other pathways might also be
involved in EMT-related E-cadherin downregulation. For two
other transcription factors that are well known to regulate E-
cadherin expression in relation to EMT, TWIST (Yang et al, 2004)
and SNAI1 (Cano et al, 2000), no significantly altered expression
was observed in ‘Fibroblastic’ cells. Together, this suggests that
ZFHX1B and SNAI2 are the predominant transcriptional regula-
tors of CDH1 accounting for the EMT phenotype of breast tumour
cell lines. Remarkably, TWIST upregulation was reported in
lobular breast cancer as an alternative for inactivating mutations
of CDH1 (Yang et al, 2004) and, moreover, SUM44PE, the only
breast cancer cell line of lobular origin in our panel, showed the
highest expression of TWIST. As TWIST is not significantly
differentially expressed in the fibroblastic cell lines, we suggest that
its protein product has a direct effect on CDH1 and results in a
similar phenotype as CDH1 mutations, thereby contributing to the
typical phenotype of lobular breast cancer. The lack of upregula-
tion of SNAI1 is unexpected, especially given the recently
identified role of this gene in breast cancer recurrence (Moody
et al, 2005).

FOSL1 (also called FRA1) and FOSB, albeit to a lesser
extent, were significantly upregulated genes in cell lines with
CDH1 promoter methylation. These FOS family members
form heterodimers with JUN family members (mainly, c-Jun,
JunB and JunD) thereby forming the AP1 transcription
factor (Karin et al, 1997). Various studies have shown that
alterations of the composition of AP1 are related to changes in
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proliferation, malignant transformation and aggressiveness
of cells (Mechta et al, 1997; Smith et al, 1999). Detectable FOSL1
protein expression in mammary carcinomas was demonstrated to
be associated with poor differentiation, Ki67 and cyclin E
expression and an oestrogen receptor-negative phenotype
(Milde-Langosch et al, 2000). As an AP1 site has been identified
in the TGFBR2 promoter, upregulation of FOSL1 and FOSB
may stimulate TGFBR2 transcription. Interestingly, RHOB

binds to the promoter of TGFBR2 and in this way prevents
AP1-dependent transcription creating a negative feedback loop
that regulates TGFb signal transduction (Adnane et al, 2002).
RHOB was significantly downregulated in the ‘Fibroblastic’ cluster.
Other targets of AP1 are extracellular matrix modulating enzymes
that on their turn may contribute to an increased migratory
and metastatic phenotype. Indeed, genes encoding metallopro-
teinases MMP 2, 3, 14 and 15 as well as PLAUR, encoding the
urokinase receptor, showed increased expression in the CDH1
methylated cells.

Besides downregulation of E-cadherin and loss of cell– cell
interactions, EMT is accompanied by extensive reorganisation of
actin as well as intermediate filamental cytoskeleton. Therefore, it
is not surprising that we observed a differential expression of
various genes that encode parts of the intermediate filaments,
including KRT7, -8, -13, -14, -19 and vimentin, a fibroblastic
marker. Also genes that regulate the organisation and turnover of
the F-actin filaments such as RAC, MSN as well as RHOB were
differentially expressed (Table 2). The balance between RHO and
RAC is shifted towards RAC in cell lines with fibroblastic
morphology. The upregulation of RAC in these latter cells fits
with increased protrusions and lamellopodia that are required for
cell migration.

Also, annexin gene family members, of which ANXA1, ANXA5
and ANXA8 show increased expression in fibroblastic cells, may
indirectly affect the cytoskeleton. AXL is a member of a family of
receptor tyrosine kinases characterised by an extracellular domain
resembling cell adhesion molecules and an intracellular conserved
tyrosine kinase domain. Its upregulation in the ‘Fibroblastic-
Tumour’ cluster is in agreement with the reported elevated
expression in highly metastatic osteosarcoma cell lines (Nakano
et al, 2003) and metastatic tumours including colon cancer, gastric
cancer and melanoma (Quong et al, 1994; Craven et al, 1995; Wu
et al, 2002).

We are aware that this study requires translation to tissue
samples. Unfortunately, such a study is hampered by infiltrating
lymphocytes that confound a reliable detection of CDH1 promoter
hypermethylation by MSP (Lombaerts et al, 2004).

In conclusion, our data indicate that CDH1 promoter
hypermethylation but not CDH1 mutational inactivation is a part
of an entire EMT programme resulting in breast tumour cells
with a more aggressive phenotype, thus enabling metastasis
formation. At this moment, we do not know the initial steps
for this epigenetically controlled EMT. Nevertheless, it has
become generally accepted that metastasis is facilitated by EMT
and thus interfering with this process in breast cancer might
prevent tumour dissemination. Hence, targeting of abnormal
TGFb signalling could be one of the main priorities in preventing
EMT and its adverse effects on the prognosis of patients
with breast cancer (Sokol et al, 2005). Future investigations
will therefore be directed at verification of this transcrip-
tional programme associated with CDH1 methylation in primary
breast tumour samples and an association with disease outcome.
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Figure 5 Three examples of qPCR data showing the following: CDH1,
high expression in the ‘epithelial’ cluster; SNAI1, no significant difference;
SNAI2, high expression in the ‘fibroblastic’ cluster. The y-axis represents the
relative expression levels as determined by qPCR. Black bars¼ epithelial
with wild-type CDH1, dark grey¼ epithelial, CDH1 mutation, light
grey¼ fibroblastic tumour, CDH1 methylation, white¼ fibroblastic ‘normal’
lines, CDH1 methylation.
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