427 research outputs found

    PACS and SPIRE range spectroscopy of cool, evolved stars

    Get PDF
    Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.Comment: A&A accepte

    ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo

    Full text link
    (abbreviated) We aim to study the inner wind of the well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have pointed toward a non-homogeneous mass-loss process: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and multi-concentric shells are detected beyond 1". We present the first ALMA Cycle 0 band 9 data around 650 GHz. The full-resolution data have a spatial resolution of 0".42x0".24, allowing us to study the morpho-kinematical structure within ~6". Results: We have detected 25 molecular lines. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and suggest that the wind velocity increases rapidly from about 5 R* almost reaching the terminal velocity at ~11 R*. The channel maps for the brighter lines show a complex structure; specifically for the 13CO J=6-5 line different arcs are detected within the first few arcseconds. The curved structure present in the PV map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind, probably induced by a binary companion. From modeling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10-20 deg to the North-East and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that the companion is an unevolved low-mass main-sequence star. The ALMA data hence provide us for the first time with the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic

    SASICE: Safety and sustainability in civil engineering

    No full text
    The performance of the built environment and the construction sector are of major importance in Europe’s long term goals of sustainable development in a changing climate. At the same time, the quality of life of all European citizens needs to be improved and the safety of the built environment with respect to man-made and natural hazards, such as flooding and earthquakes, needs to be ensured. Education has a central role to play in the transformation of a construction sector required to meet increasing demands with regard to safety and sustainability. In this work, the SASICE project is presented. The aim of this project is to promote the integration of safety and sustainability in civil engineering education. The project is organised in the context of the Lifelong Learning Programme, funded by the European Community. The coordinator organisation is the University of Bologna. Nine partner universities from different countries are involved in this transnational project. The universities participating to the project constitute a network of high level competences in the civil engineering area, with several opportunities to improve lifelong learning adopting different media: joint curricula, teaching modules and professor and student exchanges. As a response to the challenge regarding new educational methods in sustainable engineering, teaching modules are developed in 4 thematic areas: (1) Safety in construction, (2) Risk induced by Natural Hazards Assessment, (3) Sustainability in construction, and (4) Sustainability at the territorial level. The development of the teaching modules is based on an extensive analysis of the need for highly qualified education on Safety and Sustainability involving all relevant stakeholders (European and national authorities, companies, research institutes, professional organizations, and universities).The main target is enabling students to introduce these advanced topics in their study plans and curricula and reach, at the end of their studies, a specific skill and expertise in safety and sustainability in Civil Engineering. With our natural resources fading away and our infrastructure in dire need of repair, new trends and challenges in civil engineering education in the concept of “Sustainable Development” are needed to be adressed.<br/

    Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224 - Searching for clues on the mysterious evolution of massive AGB stars

    Get PDF
    We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 micrometre in radiative transport models to those in ISO-SWS and Herschel/PACS observations. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 micrometre feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 micrometre up to 6 micrometre. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150-3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (10^-3 Msol/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed that might explain the lower-limit of 2 micrometre found for the forsterite grains, but none are satisfactory. Among the mechanisms explored is a possible selection effect due to radiation pressure based on photon scattering on micron-sized grains.Comment: Accepted by A&

    The problematically short superwind of OH/IR stars - Probing the outflow with the 69 {\mu}m spectral band of forsterite

    Get PDF
    Spectra of OH/IR stars show prominent spectral bands of crystalline olivine (Mg(22x)_{(2-2x)}Fe(2x)_{(2x)}SiO4_{4}). To learn more about the timescale of the outflows of OH/IR stars, we study the spectral band of crystalline olivine at 69 {\mu}m. The 69 {\mu}m band is of interest because its width and peak wavelength position are sensitive to the grain temperature and to the exact composition of the crystalline olivine. With Herschel/PACS, we observed the 69 {\mu}m band in the outflow of 14 OH/IR stars. By comparing the crystalline olivine features of our sample with those of model spectra, we determined the size of the outflow and its crystalline olivine abundance. The temperature indicated by the observed 69 {\mu}m bands can only be reproduced by models with a geometrically compact superwind (RSWR_{\rm{SW}}\lesssim 2500 AU = 1400 R_{*}).This means that the superwind started less than 1200 years ago (assuming an outflow velocity of 10 km/s). The small amount of mass lost in one superwind and the high progenitor mass of the OH/IR stars introduce a mass loss and thus evolutionary problem for these objects, which has not yet been understood.Comment: Accepted by A&

    Dusty wind of W Hya. Multi-wavelength modelling of the present-day and recent mass-loss

    Get PDF
    Low- and intermediate-mass stars go through a period of intense mass-loss at the end of their lives in a phase known as the asymptotic giant branch (AGB). During the AGB a significant fraction of their initial mass is expelled in a stellar wind. This process controls the final stages of their evolution and contributes to the chemical evolution of galaxies. However, the wind-driving mechanism of AGB stars is not yet well understood, especially so for oxygen-rich sources. Characterizing both the present-day mass-loss and wind structure and the evolution of the mass-loss rate of such stars is paramount to advancing our understanding of this processes. We modelled the dust envelope of W Hya using an advanced radiative transfer code. The dust model was analysed in the light of a previously calculated gas-phase wind model and compared to measurements available in the literature, such as infrared spectra, infrared images, and optical scattered light fractions. We find that the dust spectrum of W Hya can partly be explained by a gravitationally bound dust shell that probably is responsible for most of the amorphous Al2_2O3_3 emission. The composition of the large (\sim\,0.3\,μ\mum) grains needed to explain the scattered light cannot be constrained, but probably is dominated by silicates. Silicate emission in the thermal infrared was found to originate from beyond 40 AU from the star and we find that they need to have substantial near-infrared opacities to be visible at such large distances. The increase in near-infrared opacity of the dust at these distances roughly coincides with a sudden increase in expansion velocity as deduced from the gas-phase CO lines. Finally, the recent mass loss of W Hya is confirmed to be highly variable and we identify a strong peak in the mass-loss rate that occurred about 3500 years ago and lasted for a few hundred years.Comment: 15 pages, 13 figure

    The CoRoT B-type binary HD50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings

    Get PDF
    B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. We deduce and summarise observational constraints for the hybrid pulsator, HD50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD50230 in the HR diagram. To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. We identify HD50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum.Comment: 26 pages, 12+6 figures, accepted for publication in Astronomy and Astrophysic
    corecore