599 research outputs found

    Inter-firm exchanges, distributed renewable energy generation, and battery energy storage system integration via microgrids for energy symbiosis

    Get PDF
    Policymakers and entrepreneurs are aware that reducing energy waste and underutilization are mandatory to actually foster the green transition. Nevertheless, small-medium enterprises usually meet technical and over-whelming financial constraints. They are unable to make profits, become less energy-sensitive, and cut down on their emissions simultaneously. Industrial districts are a source of both wealth and GHG (greenhouse gas) emissions. Eco-industrial parks (EIPs) supply a suitable strategy to ease symbiotic exchanges among various organizations. Surplus electricity from larger, energy-autonomous companies will be a new input for more vulnerable ones. This type of district is challenging, and it can provide an unexplored opportunity to cooperate, invest in renewable energy sources, and form alliances. To better exploit underutilized energy in industrial districts, it is essential to explore energy symbiosis (ES), i.e., an energy-based perspective of industrial symbiosis. This study presents an original mixed-integer linear programming (MILP) optimization model that aims to identify possible inter-firm exchanges and introduce microgrid-based support for distributed renewable-energy generators (DREGs) and battery energy storage systems (BESS) over a one-year simulation period. The model simultaneously targets economic and ecological objectives. The paper compares two case studies, one with battery support and one without. The optimization model was tested using a case study and found to improve energy efficiency (with a 43.46% saving in energy costs) and reduce greenhouse gas emissions (with an 84.59% reduction in GHG) by facilitating symbiotic exchanges among SMEs in industrial districts. The inclusion of BESS support further enhanced the model's ability to utilize green and recovered energy. These findings have im-plications for policymakers, entrepreneurs, and SMEs seeking to transition to more sustainable energy practices. Future work could explore the applicability of the MILP optimization model in other contexts and the potential for scaling up the model to larger industrial districts

    Exposure to Air Pollution in Transport Microenvironments

    Get PDF
    People spend approximately 90% of their day in confined spaces (at home, work, school or in transit). During these periods, exposure to high concentrations of atmospheric pollutants can pose serious health risks, particularly to the respiratory system. The objective of this paper is to define a framework of the existing literature on the assessment of air quality in various transport microenvironments. A total of 297 papers, published from 2002 to 2021, were analyzed with respect to the type of transport microenvironments, the pollutants monitored, the concentrations measured and the sampling methods adopted. The analysis emphasizes the increasing interest in this topic, particularly regarding the evaluation of exposure in moving cars and buses. It specifically focuses on the exposure of occupants to atmospheric particulate matter (PM) and total volatile organic compounds (TVOCs). Concentrations of these pollutants can reach several hundreds of µg/m3 in some cases, significantly exceeding the recommended levels. The findings presented in this paper serve as a valuable resource for urban planners and decision-makers in formulating effective urban policies

    Empowering rural districts with Urban-Industrial Symbiosis: A multiobjective model for Waste-to-Energy cogeneration and hydrogen sustainable networks

    Get PDF
    The growing demand for sustainable energy sources and the need to mitigate greenhouse gas emissions have led to increased interest in developing efficient, cost-effective, and environmentally friendly industrial systems. This paper presents a multi-echelon multi-objective network design model for urban-industrial symbiosis, combining biogas and hydrogen production plants with locally sourced organic waste as feedstock. The integrated biogas-hydrogen system utilizes locally sourced agricultural and organic waste as feedstock, enhancing rural processes sustainability and resource efficiency. The model optimizes the location of industrial plants based on environmental and economic parameters, including transportation emissions, energy consumption, and carbon footprint. A case study set in Emilia Romagna validates the model, and a sensitivity analysis examines the impact of varying input parameters on the designed industrial park. Results demonstrate that the novel combined biogas-hydrogen system not only reduces greenhouse gas emissions but also produces hydrogen at a lower cost due to the utilization of excess power from the biogas cogeneration plant. This research has significant implications, offering a sustainable and cost-effective hydrogen source while promoting efficient supply chain management and strategic decision-making in the renewable energy sector. Further study might investigate system robustness against disruptive events, plant design, and the integration of additional renewable sources

    Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling

    Get PDF
    This paper investigates multiwavelength retrievals of median equivolumetric drop diameter D(sub 0) suitable for drizzle and light rain, through collocated 355-/527-nm Micropulse Lidar Network (MPLNET) observations collected during precipitation occurring 9 May 2012 at the Goddard Space Flight Center (GSFC) project site. By applying a previously developed retrieval technique for infrared bands, the method exploits the differential backscatter by liquid water at 355 and 527 nm for water drops larger than approximately 50 micrometers. In the absence of molecular and aerosol scattering and neglecting any transmission losses, the ratio of the backscattering profiles at the two wavelengths (355 and 527 nm), measured from light rain below the cloud melting layer, can be described as a color ratio, which is directly related to D(sub 0). The uncertainty associated with this method is related to the unknown shape of the drop size spectrum and to the measurement error. Molecular and aerosol scattering contributions and relative transmission losses due to the various atmospheric constituents should be evaluated to derive D(sub 0) from the observed color ratio profiles. This process is responsible for increasing the uncertainty in the retrieval. Multiple scattering, especially for UV lidar, is another source of error, but it exhibits lower overall uncertainty with respect to other identified error sources. It is found that the total error upper limit on D(sub 0) approaches 50%. The impact of this retrieval for long-term MPLNET monitoring and its global data archive is discussed

    A human-machine learning curve for stochastic assembly line balancing problems

    Get PDF
    The Assembly Line Balancing Problem (ALBP) represents one of the most explored research topics in manufacturing. However, only a few contributions have investigated the effect of the combined abilities of humans and machines in order to reach a balancing solution. It is well-recognized that human beings learn to perform assembly tasks over time, with the effect of reducing the time needed for unitary tasks. This implies a need to re-balance assembly lines periodically, in accordance with the increased level of human experience. However, given an assembly task that is partially performed by automatic equipment, it could be argued that some subtasks are not subject to learning effects. Breaking up assembly tasks into human and automatic subtasks represents the first step towards more sophisticated approaches for ALBP. In this paper, a learning curve is introduced that captures this disaggregation, which is then applied to a stochastic ALBP. Finally, a numerical example is proposed to show how this learning curve affects balancing solutions

    Machine learning for multi-criteria inventory classification applied to intermittent demand

    Get PDF
    Multi-criteria inventory classification groups inventory items into classes, each of which is managed by a specific re-order policy according to its priority. However, the tasks of inventory classification and control are not carried out jointly if the classification criteria and the classification approach are not robustly established from an inventory-cost perspective. Exhaustive simulations at the single item level of the inventory system would directly solve this issue by searching for the best re-order policy per item, thus achieving the subsequent optimal classification without resorting to any multi-criteria classification method. However, this would be very time-consuming in real settings, where a large number of items need to be managed simultaneously. In this article, a reduction in simulation effort is achieved by extracting from the population of items a sample on which to perform an exhaustive search of best re-order policies per item; the lowest cost classification of in-sample items is, therefore, achieved. Then, in line with the increasing need for ICT tools in the production management of Industry 4.0 systems, supervised classifiers from the machine learning research field (i.e. support vector machines with a Gaussian kernel and deep neural networks) are trained on these in-sample items to learn to classify the out-of-sample items solely based on the values they show on the features (i.e. classification criteria). The inventory system adopted here is suitable for intermittent demands, but it may also suit non-intermittent demands, thus providing great flexibility. The experimental analysis of two large datasets showed an excellent accuracy, which suggests that machine learning classifiers could be implemented in advanced inventory classification systems

    Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence

    Get PDF
    One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets

    Quantifying the Direct Radiative Effect of Absorbing Aerosols for Numerical Weather Prediction: A Case Study

    Get PDF
    We conceptualize aerosol radiative transfer processes arising from the hypothetical coupling of a global aerosol transport model and a global numerical weather prediction model by applying the US Naval Research Laboratory Navy Aerosol Analysis and Prediction System (NAAPS) and the Navy Global Environmental Model (NAVGEM) meteorological and surface reflectance fields. A unique experimental design during the 2013 NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission allowed for collocated airborne sampling by the high spectral resolution Lidar (HSRL), the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI), up/down shortwave (SW) and infrared (IR) broadband radiometers, as well as NASA A-Train support from the Moderate Resolution Imaging Spectroradiometer (MODIS), to attempt direct aerosol forcing closure. The results demonstrate the sensitivity of modeled fields to aerosol radiative fluxes and heating rates, specifically in the SW, as induced in this event from transported smoke and regional urban aerosols. Limitations are identified with respect to aerosol attribution, vertical distribution, and the choice of optical and surface polarimetric properties, which are discussed within the context of their influence on numerical weather prediction output that is particularly important as the community propels forward towards inline aerosol modeling within global forecast systems

    Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data

    Get PDF
    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft
    • …
    corecore