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Abstract: People spend approximately 90% of their day in confined spaces (at home, work, school
or in transit). During these periods, exposure to high concentrations of atmospheric pollutants can
pose serious health risks, particularly to the respiratory system. The objective of this paper is to
define a framework of the existing literature on the assessment of air quality in various transport
microenvironments. A total of 297 papers, published from 2002 to 2021, were analyzed with respect
to the type of transport microenvironments, the pollutants monitored, the concentrations measured
and the sampling methods adopted. The analysis emphasizes the increasing interest in this topic,
particularly regarding the evaluation of exposure in moving cars and buses. It specifically focuses
on the exposure of occupants to atmospheric particulate matter (PM) and total volatile organic
compounds (TVOCs). Concentrations of these pollutants can reach several hundreds of µg/m3

in some cases, significantly exceeding the recommended levels. The findings presented in this
paper serve as a valuable resource for urban planners and decision-makers in formulating effective
urban policies.
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1. Introduction

People spend approximately 90% of their day in confined spaces (at home, work,
school or in transit) [1–3].

Even in comfortable and safe indoor environments, there are significant risks asso-
ciated with exposure to air pollutants. Indoor air pollution contributes to approximately
3.8 million deaths annually, while outdoor exposure causes 4.2 million deaths, resulting in a
total of 8 million deaths caused by air pollution [4,5]. One of the main reasons behind these
deaths is the poor air quality in urban areas, where approximately 90% of the population
does not have access to air that meets the air quality guideline values set by the World
Health Organization (WHO) [6–8]. Due to its impact on public health, air pollutants are
among the main environmental health risks [7,9,10] While travelers and commuters spend a
relatively short amount of time each day in transit (approximately 6% according to [11], and
around 5.5% according to [12]), professional drivers spend a considerable portion of their
day inside their vehicles (around 25% to 35%). Regardless, the time spent in transportation
significantly influences air pollution exposure, contributing up to approximately 30% of
the total daily cumulative exposure to certain air pollutants [13–19].

According to [14], pollutant exposures in transport microenvironments are often
substantially higher compared to other settings due to the lack of adequate pollutant
dispersion, resulting in the accumulation of pollutants in confined spaces [20–22].

Vehicle cabins, in particular, are complex microenvironments where atmospheric
pollutants tend to accumulate, including emissions from materials, exhaust emissions from
nearby vehicles, evaporative emissions from the fuel system, and abrasion emissions from
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tires, brakes, and clutches [23]. Therefore, these microenvironments become significant
sources of exposure to various air pollutants, such as Volatile Organic Compounds (VOCs),
carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM) [19,24,25]. As
reported by Lexen et al., 2021 [12], “concentrations of these pollutants can be particularly
high in hot, non-ventilated transport microenvironments; however, concentrations are
expected to decrease rapidly with ventilation”. As reported in [23], concentrations of
different compounds in the passenger compartment are typically higher (even 2–3 times
higher) compared to concentrations in other closed environments where people spend their
time, such as residential areas, workplaces, public buildings, and hospitals. This condition
is further aggravated, especially along busy roads in urban transport environments, where
peak concentrations occur during morning commute hours [26–28].

The exposure in transport microenvironments has been well-documented in previous
studies and literature reviews, which have described numerous monitoring and evaluation
experiences for various modes of transportation, including taxis, buses, private automobiles,
motorcycles, bicycles, trains, light rail, and metros. Table 1 provides a summary of the
main literature reviews available. Among the types of microenvironments investigated
in the review articles, cars and buses have received the most attention. Ref. [29] analyzed
air pollution exposures during car and bus travel in Europe, synthesizing findings from
21 papers published between 2000 and 2016. The results generally showed higher exposures
for car riders and lower exposures for pedestrians to particulate matter PM2.5, ultrafine
particles, carbon monoxide, and black carbon. In addition to cars and buses, Ref. [14] also
considered taxis to summarize personal exposure to fine particulate matter and carbon
monoxide based on approximately 50 papers published between 1991 and 2005. Ref. [26]
examined subway, car, and bus microenvironments to better understand personal exposure
during commuting, focusing solely on European studies (48 papers published between
1998 and 2013). The study demonstrated that traveling by car resulted in higher exposure
to PM and Black Carbon (BC) compared to cycling. The widespread reliance on private
car transport has become a significant daily health threat for urban commuters. Ref. [30]
compared exposure to PM2.5, ultrafine particles (UFPs), and BC in cars, buses, bicycles,
motorcycles, auto-rickshaws, and on/near-road walking, considering only studies from the
Asian region to facilitate comparisons with findings from Europe and the United States of
America (USA). The results showed that average PM2.5 concentrations in cars (74 µg/m3)
and buses (76 µg/m3) in Asian cities were approximately two to three times higher than
those in Europe and American cities. UFP exposures in Asian cities were twice as high
for pedestrians and up to approximately nine times high in cars compared to cities in
Europe or the USA. Asian pedestrians were exposed to approximately seven times higher
BC concentrations than pedestrians in the USA. Ref. [11] collected papers that provided
measurements of pollutants (particulate matter and gases) and evaluations of exposures in
passengers of rail, bus, car, motorcycle, published until 2020. Finally, Ref. [31] focused on
‘in-transit’ UFP exposure studies specific to cars, buses, ferries, and rail, based on 47 papers
published up to 2010.

Cars were the primary focus of [23] (approximately 50 papers between 1991 and 2016),
Ref. [32] (25 papers between 1999 and 2014), Ref. [12] (64 papers between 2004 and 2021),
Ref. [25] (90 papers), and Ref. [33]. Ref. [19] concentrated solely on taxis, highlighting
that taxi drivers are exposed to numerous particulate and gas air pollutants inside their
vehicles, mainly due to exhaust infiltration emitted from surrounding vehicles and smoking
in cabs. Ref. [34] analyzed 31 articles (2004–2020) evaluating schoolchildren’s exposure
to various air pollutants during their daily commute, while [35] identified recent ad-
vances in addressing the spatiotemporal dynamics of exposure during travels based on the
104 studies that they selected.

Lastly, Ref. [36] reviewed the literature (138 papers published between 1990 and 2021)
related to chemical and other exposures inside an aircraft cabin.
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Table 1. Main review papers available in the literature.

Authors Transport
Microenvironments

Pollutants
Considered

Papers Reviewed
and Years
Considered

Major Findings

[29] Car and bus PM2.5, UFP, CO
and BC 21 (2000–2016) “Results show greatest exposures in car riders

and lowest exposure in pedestrians”

[23] Car VOC About 50
(1991–2016)

“Elevated concentrations of various VOCs in
vehicle cabin, compared with ambient air or other
indoor environments, and their impact on human
health has been paid a risen attention of
the researches.
Multiplicity of synthetic materials placed in
vehicle interior emit even hundreds of
volatile organic
compounds. For that reason, concentrations of
different organic compounds are probably the
highest in new vehicles and decrease with vehicle
age increase, along with decreased with time
emission of VOCs from materials”

[19] Taxi

PM2.5, PM10,
organic
carbon/elemental
carbon (OC/EC)
and NO2

21 (1998–2018)

“Results show that taxi drivers are exposed
inside their vehicle to numerous particulate and
gas air pollutants mainly issued from exhaust
infiltration emitted from surrounding vehicles
and from smoking in cabs. Concentrations inside
taxicabs varied considerably between the studies
according to the territorial and the topographical
features”

[36] Aircraft cabin

Oil fumes,
organophosphates,
and halogenated
flame retardants

138 (1990–2021)

“The results show that those who work in the
aircraft cabin are at an increased risk of
neurological injury or disease due to
their profession”

[26] Car, bus and
subway PM and BC 48 (1998–2013)

“Compared to other transport methods,
travelling by car has been shown to involve
exposure both to higher PM and BC as compared
with cycling”

[14] Bus, car and taxi UFPs and CO About 50
(1991–2005)

“The exposure studies examined revealed
pedestrians and cyclists to experience lower fine
particulate matter and CO exposure
concentrations in comparison to those inside
vehicles—the vehicle shell provided no
protection to the passengers. Proximity to the
pollutant sources had a significant impact on
exposure concentration levels experienced,
consequently individuals should be encouraged
to use back street routes”

[32] Car

UFPs, PM2.5, PM10,
CO, CO2, BC, and
Polycyclic aromatic
hydrocarbons
(PAHs)

25 (1999–2014)

“In-vehicle panel studies provide additional
evidence that traffic PM exposures at commonly
experienced concentrations among car
commuters can be associated with a
cardiorespiratory response”
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Table 1. Cont.

Authors Transport
Microenvironments

Pollutants
Considered

Papers Reviewed
and Years
Considered

Major Findings

[31] Car, bus, ferry, rail UFPs 47 (until 2010)

“Mean concentrations in bus, automobile
(non-tunnel travel), rail, and walk modes were
generally comparable. However, UFP exposure
(and dose) during time spent in-transit is strongly
dependent on a range of mode-specific and more
general determinants, including, but not limited
to, the effects of: meteorology, traffic parameters,
cabin ventilation, filtration, deposition, UFP
penetration, fuel type, exhaust treatment
technologies, respiratory minute ventilation,
route and microscale phenomena”

[30] Car, bus,
motorcycles

PM2.5, UFPs and
BC n.a. (1997–2017)

“PM2.5 concentrations while walking were 1.6
and 1.2 times higher in Asian cities (average
42 µg/m3) compared to cities in Europe
(26 µg/m3) and the USA (35 µg/m3, respectively.
Likewise, average PM2.5 concentrations in car
(74 µg/m3) and bus (76 µg/m3) modes in Asian
cities were approximately two to three times
higher than in Europe and American cities. UFP
exposures in Asian cities were twice as high for
pedestrians and up to ∼9-times as high in cars
than in cities in Europe or the USA. Asian
pedestrians were exposed to ∼7-times higher BC
concentrations compared with pedestrians in
the USA”

[12] Car
Volatile Organic
Compounds
(VOCs)

64 (2004–2021)

“Car cabins are complex environments, including
a large range of materials and products such as
plastics, textiles, leather, and electronics.
Chemicals are emitted from these materials over
time, and it is possible to quantify these
chemicals in dust particles, air and on surfaces in
car cabins. Levels of flame retardants, such as
PBDEs and OPFRs, have been studied extensively
in car cabins, but for other SVOCs knowledge
about levels is either still limited or unknown for
some chemical classes”

[34] Schoolchildren
commuter

12 different air
pollutants 31 (2004–2020)

“Commuter microenvironment plays a vital role
in schoolchildren’s total daily exposure, although
they only spend a small proportion of time
on commuting”

[11] Rail, bus, car,
motorcycle

PM10, PM2.5, UFPs,
BC, NO2, and NOx

40 (2016–2020)

“Higher concentrations of air pollutants were
often experienced in motorised transport
compared to cycling and walking. However,
closing car windows and operating ventilation in
recirculation mode was found to lower
particulate pollution concentrations inside cars”
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Table 1. Cont.

Authors Transport
Microenvironments

Pollutants
Considered

Papers Reviewed
and Years
Considered

Major Findings

[35] Rail, bus, car,
motorcycle n.a. 104 (until 2020)

“The findings show that (a) air pollution
exposure is higher in open than close transport
modes, (b) pedestrians and cyclists suffer the
most due to higher respiration rates and
proximity to the streets, (c) air pollution exposure
causes both short and long-term changes in travel
behaviour (d) despite the poor air quality, many
developing nations lack adequate work
on exposure”

[25] Car PM and VOCs 90

“Particulate matters, aromatic hydrocarbons,
carbonyls and airborne bacteria have been
identified as the primary air pollutants inside
metro system”

[33] Car VOCs, COx, PMs,
and NOx

n.a.

“Depending on numerous external factors,
window-opening, correct usage of automated air
conditioning systems, and indoor air filters could
be useful air quality improvement tools and
recommendations for optimizing the interior
air hygiene”

Previous literature reviews on travel microenvironments have been limited in several
aspects, including the following:

• Few transport microenvironments considered for each study;
• Small sample size (number of papers), despite a large research timeframe;
• Limited treatment of the number of pollutants;
• Few studies reported on pollutant concentration values.

To overcome these limitations, this study extends the research to include various
transport microenvironments, providing a comprehensive overview of scientific activity
dedicated to the study of indoor air quality and population exposure during different
transportation phases. This paper specifically focuses on the growing interest in finer
particles (PM1 and UFPs), which have not always been covered in previous reviews. This
study aims to summarize the state of knowledge and provide quantitative information on
relative exposures for different transportation modes.

The paper is organized as follows: Section 2 describes the methodological approach
adopted for the research and evaluation of the scientific articles. Section 3 presents the
research results and their discussion, structured into paragraphs dedicated to specific
aspects. Section 4 contains the summary, conclusions, and suggestions for future research.

2. Methodology
2.1. Scope of the Review

To ensure a comprehensive literature review, it is necessary to adopt a meticulous
approach for collecting and analyzing bibliographic reference materials. In this paper, a
search protocol (Table 2) has been defined, along with an evaluation and selection method
for the identified papers (Figure 1). Furthermore, the analysis protocol (Table 3) was applied
to critically examine the contents of the collected material and present it in a structured
manner. The research questions that this work aims to address are as follows:

Q1: What are the concentrations of pollutants inside means of transport?
Q2: Are high pollutant concentrations associated with specific areas (e.g., large cities) or

moving vehicles?
Q3: How are indoor transportation environments monitored?
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Table 2. Search protocol for the material collection.

A Research Questions

A1. Q1—What is the concentration of pollutants inside means of transport?

A2. Q2—Are high concentrations connected to specific areas (e.g., large cities) or to moving vehicles?

A3. Q3—How are indoor transportation environments monitored?

B Database

B1. ScienceDirect

B2. PubMed

B3. Scopus

C Search Criteria

C1. Journal All

C2. Year 2002–2021

C3. Article type Research and Review

C4. Date of search 24 December 2021

D Keywords Used in Documentary Research

Group A Group B ScienceDirect Scopus Pubmed Total

D1.

Air quality AND

Microenvironment 17.793 707 676 19.176

D2. Transport 389.310 17.855 10.719 67.505

D3. In-Vehicle 150.797 611 214 151.622

D4. Cabin 9.990 1.061 399 2.459

D5. Commuter 7.074 357 5.577 13.008

D6. Driver 91.320 2.049 984 12.165

D7. Passenger 36.738 2.563 561 39.862

D8.

Indoor air
pollutant AND

Microenvironment 2.308 500 450 3.258

D9. Transport 16.739 1.014 1.250 17.878

D10. In-Vehicle 9.900 91 66 256

D11. Cabin 1.142 209 225 1.576

D12. Commuter 621 62 741 1.424

D13. Driver 3.573 109 133 3.815

D14. Passenger 1.868 177 164 2.209

D15.

Exposure AND

Microenvironment 90.174 7.242 5.225 102.641

D16. Transport 661.322 63.783 69.824 794.929

D17. In-Vehicle 282.770 1.266 685 30.228

D18. Cabin 9.025 1.399 704 11.128

D19. Commuter 4.723 602 12.073 17.398

D20. Driver 135.377 10.108 20.723 166.208

D21. Passenger 27.317 2.099 883 30.299

E Inclusion Criteria

E1. Analyzes the air quality inside means of transport OR

E2. Reports the concentrations of pollutants measured OR
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Table 3. Categories for the analysis.

I Descriptive Analysis
Year
Journal
Location (country and city)

II Material Collection
PD—Protocol-driven
IA—Informal approaches
SB—Snowball methods

III Transport Microenvironments
Transport microenvironments
Fuel
Vehicle in motion during measurements

IV Pollutant
Measured pollutant
Average concentration

V Period of Measurement
Sampling period

VI Measurement Typology
Active and/or passive instrumentation

2.2. Material Collection and Selection

The search was conducted on 24 December 2021, using ScienceDirect, PubMed, and
Scopus as the databases, without any restrictions. Two sets of keywords, referred to as
“group A” and “group B”, were utilized. Group A consisted of keywords that addressed
the main focus of the paper, while group B represented the specific area of study. These
two groups were combined, resulting in a list of 21 keywords that were used to search the
selected databases.

The search yielded a significant number of articles, particularly in the ScienceDirect
database, and specifically for the combination of keywords “Exposure” and “Transport”.

The collected papers were selected through a hierarchical analysis of their content,
progressing from a preliminary level to a more in-depth assessment. The screening process
began with the identification phase, which involved eliminating duplicates and reviewing
the abstracts of the papers to determine their relevance to the objective of this study. The
remaining papers underwent further evaluation based on content criteria, specifically
assessing the use of evaluation indicators for sustainability in tourist destinations.
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The final step involved assessing the full text of the remaining papers, which completed
the selection process. In total, 282 research papers and 15 review papers were identified
and included in the analysis.

2.3. Material Analysis

Table 3 provides a comprehensive framework for analyzing the selected papers and
structuring the description of the obtained results. Here is a breakdown of the categories of
aspects outlined in Table 3.

• Group I: descriptive analysis.

# Year of Publication: This aspect focuses on the distribution of papers across
different publication years, providing a temporal perspective on the research
in the field;

# Journal: It identifies the journals where the selected papers were published,
indicating the scholarly outlets for this topic;

# Country of Corresponding Author: This aspect highlights the geographical distri-
bution of the corresponding authors, providing insights into the global represen-
tation of research on exposure to air pollution in transport microenvironments.

• Group II: Paper Collection Method. This category describes the approach or method
used for collecting the papers included in the analysis. It could involve specific
search protocols, databases used, and any additional criteria applied during the paper
selection process.

• Group III: Means of Transport.

# Types of Means of Transport: This aspect focuses on identifying and catego-
rizing the various means of transport that were studied by the authors in the
selected papers;

# Type of Fuel: It indicates the type of fuel used by the transport vehicles exam-
ined in the studies;

# Gear During Measurements: This aspect highlights the gear or equipment used
during the measurement process, which could vary depending on the specific
means of transport.

• Group IV: Pollutants Measured and Concentrations. This category identifies the
pollutants that were measured and quantified in the selected papers. It also provides
information on the average concentrations of these pollutants reported in the studies.

• Group V: Sampling Period. This aspect describes the duration or period over which
the sampling and measurement of air pollutants took place in the selected studies.

• Group VI: Instrumentation Used. This category specifies the type of instrumentation
or devices employed for measuring air pollutants in the transport microenvironments
studied by the authors.

By considering these different aspects across the groups outlined in Table 3, this re-
search can provide a comprehensive analysis of the selected papers and present a structured
description of the obtained results.

3. Results

Table 3 shows the list of the categories of aspects used to analyze the selected papers
and to structure the description of the results obtained trying to answer the research
questions.

3.1. Descriptive Analysis

Figure 2 illustrates the temporal distribution of the selected articles published from
2002 to 2021. The analysis reveals a steady increase in publications over time, with the
highest number of studies published in 2020 and 2021 (33 articles each). Years 2017 and 2013
also saw a significant number of publications (28 and 23 articles, respectively), indicating a
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growing scientific interest in indoor pollution and exposure assessment during travel in
transport microenvironments.
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The journals that most frequently published papers on air quality in transport mi-
croenvironments were “Atmospheric Environment” with 63 papers and “Science of the Total
Environment” with 27 papers. Together, they represent 32% of the articles analyzed. The
other journals divide the other papers evenly. The “Others” category includes a large
number of journals (over 63) that have published no more than three papers each. Figure 3
provides an overview of this situation.
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Figure 3. Number of papers published per journal.

The selected studies are concentrated in particular in Asia (43%), Europe (32%) and
North America (18%) which, together, represent 93% of the studies analyzed. These works
are distributed over the entire time frame analyzed (2002–2021). The remainder is equally
distributed in the Southern Hemisphere, with articles available only in a few years. No
nationality has been assigned to the studies involving air or sea travel and papers that have
not identified the location of their case study are not included. A representation of the
geographical distribution of the papers is shown in Figure 4.
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Figure 4. Geographical distribution of the papers analyzed and year of publication.

Figure 5 highlights the most analyzed cities in the selected articles. Beijing and Los
Angeles are the prominent areas of study. Beijing has been extensively studied from
2011 to 2021, with taxis and cars being the most investigated means of transport [37–41].
Buses [41,42], metro [42], and trains [37] received less attention. In Los Angeles, which was
discussed in articles published between 2012 and 2022, cars were the primary focus [43–47].
Few studies have analyzed buses [44,48] and metro [46]. There is greater balance in the
means studied: car [49,50], bus [42,51,52], taxi [51], train [51], ferry [51], and metro [53].
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Figure 6 shows the extension of the case studies analyzed by the authors. Mega (more
than 10 million inhabitants) and big (500,000–1,000,000 inhabitants) cities are more frequent
in the studies analyzed (36% and 40%, respectively). Medium cities (100,000–500,000
inhabitants) were analyzed by 14% of the authors with an equivalent distribution between
Asia and Europe. The only exceptions to these areas are Ref. [57] which analyzes children’s
exposure due to aerosol particles generated by diesel-powered school buses in Cincinnati
(USA) and [58] which assessed the comparative risk associated with exposure to traffic
pollution when traveling via different transport modes in Christchurch, New Zealand. Less
interest is associated with small cities (less than 100,000 inhabitants), with such cities being
investigated by 10% of the authors. In Europe, Guildford (UK) and Ispra (Italy) are the
cities with the largest studies, described by [20,59–62]. In Asia, the city of Bhadrachalam
(India) is the subject of four papers [63–66]. In North America, Statesboro (USA) is the
subject of the study on VOCs and PM concentrations in new and old model automobiles
in [67], while in [68], they evaluated UFPs exposures while walking, cycling, and driving
along an urban residential roadways.
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3.2. Material Collection and Paper Type

Most of the papers were selected through the “Protocol-driven” approach (about 88%),
while the remaining were chosen using the “browse” approaches and “Snowball” methods
(3% and 9%, respectively). This is due to the fact that the use of an operative protocol for
research has allowed the selection of a significant number of articles well representative of
the reference literature.

A total of 282 papers were selected via these approaches, to which another 15 reviews,
described in Section 1, were added. Therefore, according to the type of paper, most are
research works (about 95%), while 5% are review articles.

The summary of these results is reported in Table 4.

Table 4. Final articles selected.

Research Papers

From search and selection protocol

249

From browse approach

9

From snowball methods

24

Total

282

Review papers

From search and selection protocol

14

From browse approach

1

From snowball methods

0

Total

15

3.3. Transport Microenvironments

There have been numerous studies analyzing various transport microenvironments
to assess indoor pollutant concentrations and evaluate people’s exposure during travel.
Figure 7 displays the frequency distribution of the analyzed transport microenvironments.
Cars have received the most attention, comprising approximately 35% of the studies. For
instance, Ref. [69] found that in-vehicle exposure is highly dynamic and related to local
traffic dynamics. A fitted diurnal pattern indirectly explains the complex diurnal variability
of the exposure due to the non-linear interaction between traffic density and distance to
the preceding vehicles. Refs. [70–72] are other examples of studies in this category. Many
studies focusing on cars have examined pollutant concentrations in different ventilation
modes, such as open windows, closed windows, and AC On. These studies demonstrated
that the different ventilation modes (open window, closed window, and AC On) had a
significant effect on the pollutant’s concentrations and on indoor comfort (e.g., temperature
and humidity). Ref. [73] identified a direct relationship between open windows and
high pollutant concentrations, while [74] demonstrated that driving with open windows
resulted in the highest PM10 and PM2.5 concentrations. Ref. [75] highlighted that vehicle
barrier effects are the primary determinants of in-vehicle ultrafine particle (UFP) exposure
concentrations. Other studies in this domain were conducted in [76–85]. The influence of
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automobile construction materials and temperature on in-cabin pollutant concentrations
has also been evaluated in the literature. Ref. [86] found that high temperatures can lead
to increased formaldehyde emissions due to the melting process of interior materials.
Ref. [87] observed higher concentrations of PM2.5 and CO in new cars compared to old
cars. Ref. [88] analyzed the diffusion of organic compounds from interior materials in new
cars using TVOCs (excluding formaldehyde) as tracers. The interior temperature and days
lapsed after delivery were the main factors affecting the interior concentrations of most
compounds according to a multiple linear regression analysis. Ref. [89] investigated inter-
brand, intra-brand, and intra-model variations in VOC levels and the effect of temperature.
The study reveals that butylated hydroxytoluene (BHT), a common anti-oxidant, was the
most common chemical and that a reduction in cabin temperature reduced most VOC levels,
but the impact was not statistically significant. Refs. [90–93] are other examples of this
type of assessment. The effects of the pollutants on health and the possible consequences
for driving and safety were also evaluated. In [94], the authors conducted a study on
CO2 exposure in cars to assess whether reducing CO2 levels can alleviate unpleasant
feelings, fatigue, drowsiness, or lethargy among drivers and passengers. The study found
that increased levels of in-vehicle CO2 were associated with decreased heart rate (HR),
systolic blood pressure (SBP), diastolic blood pressure (DBP), and increased drowsiness.
Ref. [95] described a new sensing method representing a novel approach for unobstructive
assessment of driver metabolic rate while maintaining indoor air quality within the vehicle
cabin. About 27% of the papers analyzed describe studies on air quality inside buses. In [96],
the authors evaluated exposure to particulate matter, BC, CO, CO2, VOCs, formaldehyde
(CH2O), total airborne bacteria and fungi pollutants in vehicle cabins, highlighting that
the type of ventilation is the main factor affecting the IAQ in vehicle cabins. In [97,98], the
influence of varying ventilation scenarios over in-cabin particle concentrations in different
school buses during parked and realistic driving (occupied and unoccupied) conditions
were analyzed. Other authors adopting a similar study approach are Refs. [99–103].
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Other authors have analyzed various factors that can influence in-cabin pollutant con-
centrations: temperature, humidity, age of the vehicle, and route. Ref. [104] analyzes the
benzene, toluene, ethylbenzene and xylenes (BTEX) pollution levels in 22 public buses in
Changsha, China. An increase in BTEX levels was observed when in-car temperature or
relative humidity increased, while they decreased when car age or travel distance increased.
The BTEX concentrations were higher in leather trims buses than in non-leather trims ones.
Ref. [105] quantitatively estimated the excess mortality for driver/passenger in long-distance
buses in terms of long driving time and inhaled PM concentrations. Several authors have
also analyzed the specific case of school buses to evaluate the exposure of students during
the journey to/from schools. The evaluations mainly concerned the bus’s own exhaust pen-
etrations, the effect of the air conditioning and the opening/closing of doors and windows,
and the use of green fuels [106–108]. About 10% of the papers have analyzed the specific
microenvironment of taxis and metros. Vehicle’s age, model, size, fuel, air conditioning
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and refueling are the main factors considered in the studies [19,109–115]. The other indoor
environments were analyzed less frequently: 6% trains [116–121], 5% airplane [122–126], 5%
truck/van/ambulance [47,127–129] and 1% (each) for trams [130–134] and boat/ferry [51,135].
Many studies consider different transport modalities at the same time, providing a com-
parison of pollutant concentrations and evaluating the possible exposure when using one
transportation mode compared to the others. About 30% of the papers collected provide
indications of this type [136–140].

Figure 8 shows the frequency distribution of the state of the vehicle during the mea-
surements. The analyses on the pollutant concentrations inside a means of transport were
conducted in most of the papers with moving vehicles (89%). In [107], the authors examined
particle concentrations and exhaled nitric oxide before and after a group bus trip, collect-
ing data on heart rate variability as well. The study found positive associations between
pre-trip samples of fine particles and ambient exposures with exhaled nitric oxide (FENO).
After the trips, FENO concentrations were primarily associated with microenvironmental
exposures. Ref. [141] investigated the concentrations of PM2.5, black carbon (BC), and
CO during Bus Rapid Transit (BRT) trips in Bogotá, Colombia. The study established a
strong relationship between vehicle emissions standards and in-vehicle concentrations.
In [118], the authors conducted a study on pollutant concentrations during a 26 km fixed
route, performing 10 repeated tests during 60 min trips to demonstrate the relationship
between emissions from the leading vehicle (LV) and in-cabin PM exposure levels. In [142],
a mobile measurement campaign was carried out to investigate the in-vehicle exposure to
traffic-related air pollutants in Hangzhou (China). Ref. [143] examined factors such as train
air conditioning filters, interior ventilation systems, tunnel environments, and platform air
quality that affect airborne particle concentrations inside trains.
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In [144], the authors analyzed particle and metal exposure in the Parisian subway,
while [145] evaluated VOC concentrations during taxi trips. On the other hand, fewer
studies have focused on stationary vehicles, specifically cars. These studies aimed to assess
the impact of sources inside the vehicle, such as coatings and materials used in the vehicle
interior, emphasizing their significant contribution to indoor air quality. Some authors
conducting research in this area include [146–148].

Finally, Figure 9 shows the type of power supply of the means of transport analyzed.
It is important to underline that not all studies indicate the type of power supply of the
means studied. Most of the works analyze diesel-powered vehicles [149–152] or petrol
vehicles [153–157]. Less frequency was detected on vehicles fueled with CNG or LPG [112,158–
161], while most recent studies have also analyzed electric or hybrid vehicles [28,162–164].
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3.4. Pollutants and Concentration

The literature review covers a wide range of pollutants, including both particulate
matter and gases. Figure 10 shows the number of papers that analyzed each pollutant.
Particulate matter (PM10, PM4, PM2.5, and UFPs) is the most extensively studied pollutant,
with 218 papers (approximately 73% of the total) focusing on it. Ref. [165] analyzed in-
vehicle exposure to PM10 and UFPs in Athens, observing higher exposures in heavily
trafficked areas and during rush hours. Ref. [16] investigated exposures and inhaled doses
of BC, UFPs, PM2.5, CO, and CO2 in different travel modes in Barcelona, with car mode
experiencing the highest concentrations of all contaminants. In [166], the authors monitored
exposure to PM10, PM2.5, CO, and BTEX inside public transport vehicles in the Kathmandu
Valley, finding severe particulate pollution inside the buses. Ref. [167] described a study
monitoring daily personal exposure to UFPs in various microenvironments using a GPS
logger, while [168] studied PM2.5 exposures for different commuting modes in Salt Lake
City, Utah (USA). TVOCs (Total Volatile Organic Compounds) have also been extensively
studied, with 55 papers focusing on them. These studies consider the numerous possible
sources of TVOCs both outside and inside microenvironments. Examples of such studies
include [51,91,159,169–171]. CO and CO2 in transport environments have also been subjects
of frequent investigation, with approximately 40 studies conducted for each pollutant.
Examples of such studies include those by [172–176]. Other pollutants, such as NO2, O3,
SO2, and metals, have received less attention in the literature, with fewer studies conducted
on these substances. Examples of studies on these pollutants include [56,177,178] for NO2,
Refs. [179–181] for 03, Refs. [176,182] for SO2, and Refs. [144,183] for metals.
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Table 5 shows the concentration values of air pollutants measured inside the means
of transport described in the papers analyzed. In particular, the data shown in the table
have been divided according to the geographical scope of the study and the type of means
of transport. In cars, the particulate concentrations were also very high. In [71], the
authors found high particulate concentrations, with PM10 reaching 844 µg/m3 and PM2.5
at 458 µg/m3 in the metropolitan city of Dhanbad, India. The highest concentrations
were observed during congestion periods, with PM levels inside auto-rickshaws being
3.3 times higher than the ambient levels. Buses also exhibited noteworthy particulate
concentrations. In [166], the authors measured PM10 levels of 275 µg/m3 inside public
transport vehicles in Kathmandu Valley, Nepal, and found that they frequently exceeded
critical levels, while [109] studied commuter exposure in Bogota, Colombia, and reported
high average concentrations of PM2.5 and BC within the city’s Bus Rapid Transit (BRT)
system vehicles.

Trains and metros showed significant PM10 concentrations as well. In [121], the
authors assessed the indoor environmental quality in train cabins in Athens, Greece, re-
porting an average PM10 concentration of 238.8 µg/m3 in old cabins, while [184] found
elevated levels during morning rush hours, with PM10 concentrations ranging from 500 to
600 µg/m3. Ref. [185] analyzed relative contributions of different transport modes in
Rome, Italy, and observed PM10 concentrations of 268 µg/m3. The particulate concentra-
tions (regardless of particle size) are lower in other transport microenvironments. TVOC
concentrations were notably high in buses (1313 µg/m3), cars (2234 µg/m3), and trains
(598 µg/m3) according to [96]. Additionally, buses exhibited elevated concentrations of
BTEX (up to 703 µg/m3 in [104]), NO2 (203 µg/m3 in [186]), and BC (250 µg/m3 in [109]).
These findings emphasize the importance of monitoring and improving air quality within
a means of transport to mitigate potential health risks associated with particulate matter
and other pollutants.

Table 5. Concentration values of air pollutants.

Geographic Area Pollutant (Unit of
Measurement)

Pollutant Concentrations by Means of Transport
References

Car Bus Truck/VanTram Train Metro Boat/FerryTaxi

ASIA

Beirut
(Lebanon) PM2.5 (µg/m3) 93 [87]

CO (ppm) 10–20 [87,172]

CO2 (ppm) 2500 [87]

Teheran (Iran) PM10 (µg/m3) 60 [175]

BTEX (ppb) 35

[145,159]

CO (ppm) 22

Formaldehyde
(ppb) 800

Acetaldehyde
(ppb) 500

Changsha
(China) PM2.5 (µg/m3) 6

[94]
BTEX (µg/m3) 40 703 1441

CO2 (ppm) 1663
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Table 5. Cont.

Geographic Area Pollutant (Unit of
Measurement)

Pollutant Concentrations by Means of Transport
References

Car Bus Truck/VanTram Train Metro Boat/FerryTaxi

ASIA Tianjin (China) PM2.5 (µg/m3) 70
[174,187]

CO2 (ppm) 1000

Beijing (China) PM10 (µg/m3) 108 [37]

PM2.5 (µg/m3) 15 38 37 75 95 [37,39,42,188]

PM1 (µg/m3) 14.7 [37]

TVOC (ppm) 0.3 [37]

CO (ppm) 2.8 [189]

CO2 (ppm) 17 5 5 [42]

NO2 (µg/m3) 31 47 [39]

Benzene (µg/m3) 13.7

[37]Toluene (µg/m3) 12.4

Xylene (µg/m3) 4.1

Shanghai
(China) PM2.5 (µg/m3) 114 159 600 136 [190]

TVOC (µg/m3) 84 [114]

CO2 (ppm) 430 [191]

Harbin (China) PAH (µg/g) 48 [161]

Hong Kong
(China) PM2.5 (µg/m3) 331 [63] 18 [192]

TVOC (ppb) 35 2.1 [50,51]

CO (ppm) 1.7 5
[49,50]

CO2 (ppm) 5000 3000

NO2 (ppm) 0.08 [49]

Seoul
(Republic of
Korea)

PM10 (µg/m3) 78 [193]

TVOC (ppb) 5 [194]

Tainan City
and Taipei City
(Taiwan)

PM10 (µg/m3) 59.8

[195]PM2.5 (µg/m3) 47.5

CO (ppm) 2.3

CO2 (ppm) 1493

Ho Chi Minh
(Vietnam) Benzene (µg/m3) 25 30.5 [137]

Bangkok
(Thailand) PM2.5 (µg/m3) 49 77 [196]

TVOC (µg/m3) 48 13.2 45.5 [197]

New Delhi
(India) PM2.5 (µg/m3) 200 113 72

[79,158,198]
BC (µg/m3) 75
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Table 5. Cont.

Geographic Area Pollutant (Unit of
Measurement)

Pollutant Concentrations by Means of Transport
References

Car Bus Truck/VanTram Train Metro Boat/FerryTaxi

ASIA Bhadrachalam
(India) PM10 (µg/m3) 56 107

[63,66]PM2.5 (µg/m3) 85 75

PM1 (µg/m3) 14 16.5

CO (ppm) 1.8

Dhanbad
(India) PM10 (µg/m3) 844

[71,98]PM2.5 (µg/m3) 458

PM1 (µg/m3) 302

CO2 (ppm) 600 600

Chennai
(India) CO (ppm) 4 [199]

Salem (India) PM2.5 (µg/m3) 44
[200]

CO2 (ppm) 261

Kathmandu
(Nepal) PM10 (µg/m3) 275

[166]PM2.5 (µg/m3) 92

TVOC (ppb) 3

CO (ppm) 180

Manila
(Philippines) PM10 (µg/m3) 15

[117]
PM2.5 (µg/m3) 14

CO2 (ppm) 563

EUROPE

Uppsala and
Stockholm
(Sweden)

PM10 (µg/m3) 43 [143]

PM2.5 (µg/m3) 12

Stockholm
(Sweden BC (µg/m3) 2.7 [131]

Helsinki
(Finland) PM2.5 (µg/m3) 15 10

[131]
BC (µg/m3) 2 1.7

London (UK) PM10 (µg/m3) 20 39 8.9 68.4

[76,128,201]PM2.5 (µg/m3) 7.4 13.2 3.8 34.5

PM1 (µg/m3) 6.9 9.2 23.3

CO2 (ppm) 802 [128]

BC (µg/m3) 4.4 5.6 9.8 5.2 [76,201]

NO2 (ppb) 80 78.5 [128,164]

Dublin
(Ireland) PM2.5 (µg/m3) 103.5 [70]

Benzene (ppb) 3
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Table 5. Cont.

Geographic Area Pollutant (Unit of
Measurement)

Pollutant Concentrations by Means of Transport
References

Car Bus Truck/VanTram Train Metro Boat/FerryTaxi

EUROPE Frankfurt
(Germany) PM10 (µg/m3) 40–70

[202]
PM2.5 (µg/m3) 45

Paris (France) PM10 (µg/m3) 188 [144]

PM2.5 (µg/m3) 59 136 [144,186]

CO (ppm) 0.01 [111]

NO2 (µg/m3) 203 113 [111,186]

Athens
(Greece) PM10 (µg/m3)

48–
148–
350

[120,121,184]

PM2.5 (µg/m3)
10–
32–50

PM1 (µg/m3)
6.5–
7.9–
27

TVOC (µg/m3) 0.6

CO (ppm) 443

CO2 (ppm) 755 [121]

Benzene (µg/m3) 1.2

[120,121]NO2 (µg/m3) 180

SO2 (µg/m3) 8

Thessaloniki
(Greece) PAH (ng/m3) 4 6 [203]

Lisbon
(Portugal) PM10 (µg/m3) 7 2 4 85

[96,113]
PM2.5 (µg/m3) 14 17 15 40

TVOC (µg/m3) 1132 1313 598

[96]

CO (ppm) 0.6 0.6 0.3

CO2 (ppm) 1132 753 747

BC (µg/m3) 4 4.5 3

CH2O (µg/m3) 0.4 0.7 0.6

Oporto
(Portugal) BTEX (µg/m3) 5.2 [204]

Milan (Italy) PM10 (µg/m3) 15 31

[205,206]

PM4 (µg/m3) 12 21

PM2.5 (µg/m3) 10 17

PM1 (µg/m3) 8 11

TPS (µg/m3) 18 38

BC (µg/m3) 3.8 6

NO2 (µg/m3) 24 73

Benzene (µg/m3) 3.8

Ispra (Italy) PM10 (µg/m3) 28

[61,62]PM2.5 (µg/m3) 18

PM1 (µg/m3) 15
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Table 5. Cont.

Geographic Area Pollutant (Unit of
Measurement)

Pollutant Concentrations by Means of Transport
References

Car Bus Truck/VanTram Train Metro Boat/FerryTaxi

EUROPE Parma (Italy) Benzene (µg/m3) 5.85 [207]

Florence (Italy) PM2.5 (µg/m3) 56 39 [152]

Rome (Italy) PM10 (µg/m3) 61 268 268

[185]CO (ppm) 0.7

CO2 (ppm) 1271

Naples (Italy) PM10 (µg/m3) 169
[208]

PM2.5 (µg/m3) 46

Barcelona
(Spain) PM10 (µg/m3) 61 [28]

PM2.5 (µg/m3) 35 25 29 42

[16,28,132]
CO (ppm) 6.4 2 0.4 0.9 1.2

CO2 (ppm) 668 886 643 694 802

BC (µg/m3) 17 5.5–
7 3.4 7 6.5

Istanbul
(Turkey) PM2.5 (µg/m3) 60 100 28.5 42 16

[135]

BC (µg/m3) 10 4.7 4

America (North and
South)

Calgary
(Canada) PM2.5 (µg/m3) 150

[209]CO (ppm) 1.8

CO2 (ppm) 600

NO2 (µg/m3) 0.05

North Carolina
State
University
campus (USA)

PM2.5 (µg/m3) 15 14 [181]

CO (ppm) 1 0.9

O3 (ppb) 10 9

Detroit (USA) TVOC (µg/m3) 57.5 65 [210]

Phoenix (USA) TVOC (µg/m3) 1000 [163]

Los Angeles
(USA) PM2.5 (µg/m3) 13 26 [211,212]

PAH(µg/m3) 148 124 61 77 [44]

Santa Monica
(USA) PM2.5 (µg/m3) 8.5 [68]

Austin (USA) PM2.5 (µg/m3) 14
[102]

NO2 (ppb) 25

Mexico City
(USA) PM2.5 (µg/m3) 28 50 [213]
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Table 5. Cont.

Geographic Area Pollutant (Unit of
Measurement)

Pollutant Concentrations by Means of Transport
References

Car Bus Truck/VanTram Train Metro Boat/FerryTaxi

America (North and
South)

Bogota
(Colombia) PM2.5 (µg/m3) 150 167

[141,162]CO (ppm) 3.5-5

BC (µg/m3) 250

Medellin
(Colombia) PM2.5 (µg/m3) 42.2 [162]

Caxias do Sul
(Brazil) NO2 (ppb) 48 [214]

Paramaribo
(Suriname) BTEX (µg/m3) 0.44 [149]

Oceania

Auckland
(New Zealand) CO (ppm) 1 [154]

Africa

Cairo (Egypt) PM10 (µg/m3) 26–98 [74]

PM2.5 (µg/m3) 12–29 200 [99]

Lagos
(Nigeria) CO (ppm) 32 23

[157]
TVOC (µg/m3) 0.7 0.2

3.5. Measurement Period

The authors included in the review have employed diverse measurement periods,
resulting in heterogeneity across the studies. The seasons investigated most frequently were
winter (30% of the authors) and summer (28%) followed by spring (24%). Some examples
include [90,215,216], which conducted measurements during winter, while [182,217,218]
focused on summer sampling. Spring measurements were conducted in [219,220], while
only 11% of studies carried out sampling in autumn [221,222]. Some authors opted for
year-long campaigns (7% of the cases reviewed), such as [17,223,224].

3.6. Instrumental Approach to Measurement

The authors included in the review employed various instrumental approaches for
sampling and analyzing the air quality inside the means of transport. These approaches
can be categorized into active and passive sampling methods. Active samplers utilize
a forced aspiration system with pumps, allowing for accurate measurements even over
short sampling times. On the other hand, passive instruments sample air without suction
systems and have lower temporal resolution as they require a higher concentration of
pollutants to be “accumulated” before detection. The majority of the selected papers
(about 87%) utilized active instrumentation. For example, in [225], the authors employed
portable Langan analyzers for CO measurements and DustTrak analyzers for particulate
matter determinations. In [208], the authors use a portable photometric Aerocet sampler to
measure PM concentrations in the Naples metro line: the concentrations of PM10 range
between 172 and 262 mg/m3, while those of PM2.5 are between 45 and 60 mg/m3. In [226],
the authors utilized an aerosol monitor, a temperature-relative humidity monitor, and a
mobile phone for analyzing exposure to ambient fine particulate matter (PM) in transit
microenvironments in the Guangdong Province (China). In [227], to analyze personal
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exposure to PM (PM1, PM2.5, and PM10) for multiple transportation modes in Guangzhou
(China), they used an unportable battery-operated aerosol spectrometer.

The use of instruments for measuring ultrafine particles has been described by [200]
who, to measure the concentrations of particulate matter in private road transport modes
in Salem (India), use two real-time portable monitoring devices which follow the principle
of the light scattering method.

In [228], they evaluate the commuter PM exposure to severe traffic-related air pollution
(TRAP) using a portable Laser Aerosol Spectrometer and a Dust Monitor based on the
optical principle. In contrast, a smaller portion of authors (about 13%) employed passive
sampling approaches. Ref. [210] used 74 adsorbent tube samples, with 1.5 m height, at
the front and other samples to measure VOCs from buses and cars, while [229] evaluated
VOC exposure in public buses using passive sampling. In [214], the authors employed
passive samplers to measure NO2 concentrations for bus drivers, and [206] integrated real-
time monitors with time-integrated techniques to evaluate personal exposure to selected
pollutants in Milan. These examples highlight the diverse range of instrumental approaches
adopted by authors in the literature to assess air quality inside a means of transport.

4. Conclusions

This study reports a critical analysis of the main results concerning the assessment of
air quality within different types of transport microenvironments. The extensive bibliogra-
phy available on this topic has been analyzed in relation to specific aspects: (a) descriptive
aspects of each paper and collection methods; (b) type of means of transport; (c) moni-
tored pollutants; (d) measurement period; and (e) type of sampling approach. A total of
297 studies were selected and analyzed. The critical analysis of the selected studies on air
quality within transport microenvironments leads to draw the following conclusions and
limitations:

• Strong Scientific Interest: The exposure of workers and commuters to air pollutants in
transport microenvironments is a topic of significant scientific interest, as evidenced by
the large number of papers collected. There is an increasing trend of scientific articles,
particularly in the years 2020 and 2021, indicating the increasing attention given to
this field;

• Geographic Distribution: The majority of studies are concentrated in the Northern
Hemisphere, specifically in Asia (Beijing, Hong Kong, and Delhi) and Europe (London,
Paris, and Athens). This emphasizes the importance of the topic and the health
concerns in densely populated areas, especially in mega and big cities.

• Focus on Cars and Buses: Studies on personal exposure to air pollutants during
car and bus commuting are more prevalent compared to other types of transport
microenvironments. This is expected since cars and buses are the most commonly used
means of transportation globally. The evaluations often occur during the movement
of these vehicles, particularly those fueled by diesel or petrol, to assess the impact of
internal and external sources and the air exchange between the environments;

• Particulate Matter (PM): Researchers are primarily interested in atmospheric par-
ticulate matter, especially PM2.5. Fine PM has effects on health, even at very low
concentrations; in fact, a threshold below which no damage to health is observed has
not been identified. Concentrations of particulate matter in transport microenviron-
ments are often very high, exceeding several hundred µg/m3 and surpassing outdoor
levels. These high levels of particulate matter are often linked to particular conditions
and, in the studies analyzed, they were found in very busy areas, during peak hours,
in old cabins without ventilation and air filtration systems. Tobacco smoke in confined
spaces also significantly influences pollutant concentrations;

• Cars, trains and metros are the types of vehicles with higher concentrations of pollutants;
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• The World Health Organization (WHO) recognizes the strong relationship between
exposure to high concentrations of fine particulate matter and increased mortality and
morbidity. The harmful effects on health due to exposure to particulate matter in means
of transports have been described and analyzed by various authors, highlighting
their criticality;

• Total Volatile Organic Compounds (TVOCs): TVOCs, classified as a class I carcino-
gen by the International Agency for Research on Cancer (IARC), also exhibit high
concentrations in various transport microenvironments;

• Their presence is particularly relevant especially in new vehicles where the internal
construction materials (e.g., plastic, rubber, textiles, fibers, and adhesives) have signif-
icant emissions of VOCs. Also, in this case, various factors combine to increase the
pollutant concentrations: air temperature (maximum level with high temperatures)
and relative humidity, air exchange rate, and type of material.

• In particular, the highest concentrations were found in parked new vehicles compared
to older vehicles during operating conditions (vehicle moving).

• Seasonal Variation: While there is a clear relationship between pollutant concentrations
and seasons (higher concentrations in winter), most studies analyzed focused on
individual seasons. Only a few papers included evaluations in both warm and cold
periods. This limits our understanding of the seasonal variations in pollutant levels
within transport microenvironments.

• Active Instrumentation: Active sampling approaches, employing instruments with
forced aspiration systems, are the most commonly used in measuring pollutant con-
centrations within transport microenvironments.

In conclusion, given the frequent use of transport microenvironments and the signifi-
cant concentrations of pollutants present, there is a clear need for assessing occupational
and personal exposure and their impact on respiratory health. The findings of this pa-
per provide valuable insights for exposure analysis and can assist urban planners and
decision-makers in developing policies and interventions to improve and manage air
quality, ultimately protecting public health.
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