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Abstract 

Multi-criteria inventory classification groups inventory items into classes, each of which is 

managed by a specific re-order policy according to its priority. However, the tasks of 

inventory classification and control are not carried out jointly if the classification criteria and 

the classification approach are not robustly established from an inventory-cost perspective. 

Exhaustive simulations at the single item level of the inventory system would directly solve 

this issue by searching for the best re-order policy per item, thus achieving the subsequent 

optimal classification without resorting to any multi-criteria classification method. However, 

this would be very time-consuming in real settings, where a large number of items need be 

managed simultaneously.  

In this paper, a reduction in simulation effort is achieved by extracting from the population 

of items a sample on which to perform an exhaustive search of best re-order policies per 

item; the lowest cost classification of in-sample items is therefore achieved. Then, in line 

with the increasing need for ICT tools in the production management of Industry 4.0 

systems, supervised classifiers from the machine learning research field (i.e. support 

vector machines with a Gaussian kernel and deep neural networks) are trained on these 

in-sample items to learn to classify the out-of-sample items solely on the basis of the 

values they show on the features (i.e. classification criteria).  

The inventory system adopted here is suitable for intermittent demands, but it may also 

suit non-intermittent demands, thus providing great flexibility.  

The experimental analysis of two large datasets showed an excellent accuracy, which 

suggests that machine learning classifiers could be implemented in advanced inventory 

classification systems.   
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1.  Introduction 

In this paper, we focus on classifying items for inventory control. When a classification 

framework is applied to inventories, it determines the importance of items and the level of 

controls placed on the items (Onwubolu and Dube 2006). An appropriate re-order policy 

needs to be selected for each class (Nenes et al. 2010), so that applying a specific re-

order policy per class rather than per item simplifies the approach to dealing with every 

aspect of stock control. However, classifying items through multi-criteria inventory 

classification (MCIC) approaches is a separate action from finding appropriate strategies 

for each class (Mohammaditabar et al. 2012, Babai et al. 2015). The performance of MCIC 

methods does not necessarily include the performance of the inventory control system and 

little attention has been paid to the empirical implications of a simultaneous inventory 

classification and inventory control (Bacchetti et al. 2012). The original goal of minimising 

the total relevant cost is therefore forgotten when MCIC and inventory systems are not 

carried out jointly.  

Clearly, an exhaustive simulation of the inventory system performed at a single item level 

would avoid recourse to MCIC by optimally classifying all the items ex post in an inventory-

cost perspective, solving the aforementioned open issue. However, an exhaustive 

simulation of the whole population of items requires computation efforts that are too high 

for time-varying settings with thousands of items needing to be managed. 

This paper investigates the use of supervised machine learning classifiers as effective ICT 

tools for MCIC, in particular support vector machines with Gaussian kernel (SVM) and 

deep neural networks (DNN). Machine learning tools represent a challenge for smart 

manufacturing, also known as Industry 4.0 - see Wuest et al. (2016) for a review on the 

applications of machine learning in smart manufacturing.  

Machine learning needs a large amount of data to work well, and enables complex 

decision-making processes to be automated. MCIC applied to thousands of items is one of 

these complex processes, and machine learning tools may therefore also be promising in 

MCIC. However, the literature is particularly poor on this specific area of research. From a 

methodological viewpoint, this two-stage automatic classification approach (i.e. 

classification via simulation of the in-sample items and classification via machine learning 

of the out-of-sample items) could be extended to any inventory system. However, the 

choice of the inventory system depends on the demand pattern to be managed.  

In this paper, intermittent demand patterns are considered, which require ad hoc inventory 

systems in terms of forecasting approaches, probabilistic assumptions and subsequent 
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mathematical modelling, but the inventory system selected here is flexible enough to also 

suit non-intermittent demand. In particular, a periodic order-up-to level inventory system is 

adopted, where the decision variable to change among classes, which therefore drives the 

item classification, is the review interval. The higher the criticality of an item, the lower the 

review interval should be, and vice versa.     

Section 2 reviews the main published contributions related to the research. Section 3 

contains the notations used, and presents the assumptions underlying the inventory 

system. Section 4 details the steps involved in the solution. Section 5 describes the 

experimental analysis performed to investigate the effectiveness of the proposal. Finally, 

Section 6 outlines the conclusions and directions for further research. 

 

2.  Literature review 

Given that the literature on the inventory theory is very broad, we focus only on the 

aspects relevant for our study. Section 2.1 addresses the forecasting and stock control for 

intermittent demand. Section 2.2 contains various important contributions on MCIC, and 

particularly on the application of machine learning classifiers to MCIC.  

 

2.1.  Forecasting and stock control for intermittent demand 

The demand for spare parts is typically intermittent, and the literature has investigated the 

effectiveness of demand forecasting and stock control methodologies in said context. For 

a complete discussion of this topic, the reader can refer to the book edited by Altay and 

Litteral (2011). Cavalieri et al. (2008) provided a decision-making framework for managing 

spare parts, and Driessen at al. (2015) suggested a possible roadmap of the future 

agenda on this stream of research.  

Croston’s method (1972) represents the seminal contribution on intermittent demand 

forecasting according to a normally distributed demand size and a Bernoulli probability of a 

demand occurrence. A simple exponential smoothing is applied to both variables when the 

demand occurs and then an estimator of the expected value of demand per period is 

evaluated by the ratio of these smoothing effects. Syntetos and Boylan (2001) showed that 

this estimator is theoretically biased, and proposed an approximately unbiased 

modification of Croston’s method called Syntetos-Boylan Approximation (SBA).  

On the modifications of Croston’s method, the reader can refer to Levén and Segerstedt 

(2004), Boylan and Syntetos (2007), Dhakshayani and Narayanan (2014), Teunter and 
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Sani (2009) and Babai et al. (2014). Regattieri et al. (2005) and Downing et al. (2014) 

compared other forecasting approaches for intermittent demand.  

Artificial intelligence has also been applied for forecasting intermittent demand because of 

its ability to generalise a non-linear process without requiring any distributional 

assumptions; see for example Gutierrez et al. (2008), Kourentzes (2013), and Lolli et al. 

(2017), who tested several different artificial neural networks. When the intermittent 

demand patterns also contain seasonal and trend components, SARIMA (Seasonal Auto 

Regressive Integrated Moving Average) modelling shows promising results (Gamberini et 

al. 2010, Lolli et al. 2011, Lolli et al. 2014a).  

Although demand forecasting and stock control contribute equally towards the efficiency of 

inventory management (Tratar 2015), it should be emphasised that the comparison of 

forecasting methods was performed by the aforementioned authors in terms of forecasting 

accuracy, which does not necessarily lead to better performance of the inventory system in 

terms of total relevant cost. 

With regards to the stock control of intermittent demand profiles, the literature can be 

classified into two main streams. 

The first stream provides a wide set of compound distributions for modelling purposes. 

However, as emphasised by Babai et al. (2015), as the data become more erratic, the true 

demand size distribution may not comply with any standard theoretical distribution. In 

particular, on the statistical analysis of intermittent demand, Zotteri (2000), Eaves (2002), 

Teunter et al. (2010b), Babai et al. (2011), and Gamberini et al. (2014). On the interaction 

between forecasting and stock control, see Syntetos and Boylan (2006).  

The second stream relating to stock control focuses on the performance of different 

inventory systems on a wide range of items taken from industrial case studies. Clearly, this 

stream of research also matches MCIC (Section 2.2). The effectiveness of inventory 

systems in the case of intermittent demand has been explored in several works (e.g. 

Porras and Dekker 2008, Syntetos et al. 2009; Nenes et al. 2010, Syntetos et al. 2010, 

Conceição et al. 2015), however the item classification is again created before testing the 

inventory system on the generated classes, and thus appears disjointed.  

 

2.2.  Multi-criteria inventory classification 

A pioneering contribution on MCIC was provided by Flores et al. (1992). They applied the 

Analytical Hierarchy Process (AHP) to classify items in terms of annual usage value (given 

by the product of the unit cost and the total annual demand), average unit cost, criticality, 

http://www.sciencedirect.com/science/article/pii/S0377221710006454#b0030
http://www.sciencedirect.com/science/article/pii/S0377221710006454#b0115
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and the lead-time. This represents one of the early attempts to overcome the weakness 

shown by the mono-criterion classification on usage value in representing the whole 

criticality of an item. AHP is also adopted by other authors (e.g. Partovi and Burton 1993, 

Partovi and Hopton 1994, Cakir and Canbolat 2008, Lolli et al. 2014b), and in particular for 

spare parts classification (Scala et al. 2014). Other multi-criteria methods have been used, 

such as weighted optimisation (e.g. Ramanathan 2006, Zhou and Fan 2007, Ng 2007, 

Hadi-Vencheh 2010, Chen 2011, Ladhari et al. 2015, Ishizaka et al. 2018) and case-based 

reasoning (e.g. Chen et al. 2008 and Soylu and Akyol 2014). Since the final goal is to 

associate the classes with specific inventory control methods, a further open issue to 

investigate is the correlation between the classification criteria and the efficiency of the 

inventory system. Only two papers have proposed an inventory classification from an 

inventory cost perspective. Zhang et al. (2001) presented an item classification scheme 

that is consistent with their cost optimization model. A constrained model is proposed 

(constrained to the target cycle service level and order frequency) instead of a cost-based 

model including order and shortage costs, through a continuous review inventory system. 

They derived an expression for reorder points to obtain an item classification ratio: an item 

is ranked as high (i.e. with a high target cycle service level) if the demand rate is large, or if 

the squared holding cost and the replenishment lead time are small. Starting with a total 

cost model including the shortage cost, Teunter et al. (2010a) derived an exact expression 

of the cycle service level with a different ratio for item classification. An item is ranked high 

if the demand rate and shortage cost are large or if the holding cost and the order quantity 

are small. They show empirically that their new classification criterion outperforms all the 

other methods compared. 

Regardless of the classifying criteria and the multi-criteria approach used, item 

classification requires a sorting method, so that the exercise of ranking items does not 

achieve the objective (Ishizaka and Nemery 2013). In other words, the cardinalities of the 

clusters should be subjectively established by decision-makers based on their expertise 

(see the criticism in Lolli et al. 2014b). It follows that the classes are disjointed in relation to 

inventory control, with items not being robustly classified.  

To the best of our knowledge, only a few contributions have focused on applying machine 

learning classification algorithms to MCIC, and none have been extended to the inventory 

system.  

The first work on applying machine learning classification algorithms to MCIC dates back 

to 2002 (Partovi and Anandarajan, 2002), where neural networks (NNs) were used to 
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classify small populations of items by training the networks on a sample of items 

previously classified by decision-makers on subjective criteria (called 'features' in machine 

learning theory). However, the inventory system was not considered, and thus the 

classification obtained is not inventory cost-oriented. Similarly, Yu (2011) experimented 

with SVM, NN and the k-nearest neighbour algorithm on Reid's famous dataset (1987) of 

forty-seven items using the approaches of Flores et al. (1992), Ramanathan (2006), and 

Ng (2007) as benchmarks. SVM has been shown to be the most accurate machine 

learning classifier to replicate these MCIC approaches. However, it does not take into 

account the cost-oriented optimality of the classifications. Kabir and Hasin (2013) tested 

single and two-hidden layer NNs on a dataset of 351 items, which had already been 

classified by a fuzzy AHP priority scoring method. Again the classification is not cost-

oriented and the MCIC remains disjointed from the inventory system. López-Soto et al. 

(2016) exploited Logical Analysis of Data, a supervised data mining technique able to 

generate patterns into classes by a Boolean function, in order to detect biases or 

inconsistencies in the classification provided by decision-makers. Kartal et al. (2016) 

combined several multi-criteria decision making approaches with machine learning 

algorithms for MCIC. Multi-criteria approaches are used to classify items into classes, and 

then machine learning classifiers (i.e. naїve Bayes, Bayesian network, NN, and SVM) are 

trained on the resulting classifications in order to predict the classes to which the items 

belong. NN and SVM were shown to have the highest accuracy. However, the accuracy of 

machine learning classifiers was again evaluated with respect to classifications without 

considering the inventory system. As a consequence, the selection of classification criteria 

from an inventory-cost perspective remains an open issue.  

Conversely, our proposal is geared towards reducing the human contribution with its 

potential fallibility. In fact, the lowest cost classification of in-sample items obtained by the 

exhaustive simulation of the inventory system, which is used to train the machine learning 

classifiers, fulfils this goal. 

 

3.  Notation and framework   

Below is the notation adopted in this paper. 

Setting dimensions: 

𝐾 = number of classes of items 

𝐽 = number of classification criteria 

𝑇 = number of time periods used for simulation 
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𝑛 = number of warm-up periods ((𝑇 − 𝑛) is thus the number of collection periods) 

Sets: 

I = population of items 

I′ = sample of items I′ ⊆ I 

𝐶𝑘,I = k-th class of items into I, with 𝑘 = 1,… , 𝐾 

𝐶𝑘 = k-th class of items into I′, with 𝑘 = 1,… , 𝐾 

Item features: 

𝐷𝑖 = demand of item 𝑖, with 𝑖 = 1,… , |I| (stochastic)  

𝑝𝑖 = positive demand probability of item 𝑖, with 𝑖 = 1,… , |I| (stochastic) 

𝐷𝑖
+ = positive demand size of item 𝑖, with 𝑖 = 1,… , |I| (stochastic) 

𝑆𝑡𝑑(𝐷𝑖
+) = standard deviation of the positive demand size of item 𝑖, with 𝑖 = 1,… , |I| 

𝑀𝑆𝐸𝑖 = mean square error of the positive demand size of item 𝑖, with 𝑖 = 1,… , |I| 

𝐷𝑖,𝑡 = demand of item 𝑖 in time period 𝑡, with 𝑖 = 1,… , |I| and 𝑡 = 1,… , 𝑇 

𝑅𝐿𝑇𝑖 = replenishment lead time of item 𝑖, with 𝑖 = 1,… , |I| (deterministic) 

𝑡𝐶𝑆𝐿𝑖 = target cycle service level of item 𝑖, with 𝑖 = 1, … , |I| (assigned) 

𝐹𝑖,𝑡 = forecasted demand of item 𝑖 for time period 𝑡, with 𝑖 = 1, … , |I| and 𝑡 = 1,… , 𝑇 

(calculated at the end of period (𝑡 − 1)) 

𝑆𝑖,𝑡 = order-up-to level of item 𝑖 in time period 𝑡, with 𝑖 = 1,… , |I| and 𝑡 = 1,… , 𝑇 (calculated 

at the end of period (𝑡 − 1)) 

𝐶𝑖 = unitary purchasing cost of item 𝑖, with 𝑖 = 1,… , |I| (deterministic) 

ℎ𝑖 = unitary holding cost of item 𝑖, with 𝑖 = 1,… , |I| (deterministic) 

𝑜𝑖 = unitary ordering cost of item 𝑖, with 𝑖 = 1,… , |I| (deterministic) 

Decision variables: 

𝑅𝑖 = review interval of item 𝑖, with 𝑖 = 1,… , |I| 

 

A forecast-based periodic inventory system is implemented, where the inventory status of 

each item is periodically reviewed and an order is placed to reach the order-up-to level 𝑆𝑖,𝑡. 

This is dynamically computed with a model originally introduced by Syntetos et al. (2010), 

where the aim is to reach a target service level 𝑡𝐶𝑆𝐿𝑖, assigned to the single items as the 

probability of not incur in a backorder during a replenishment cycle. The review interval 

𝑅𝑖 may vary in a range of 𝐾 feasible values for all the population items. This parameter 

was exhaustively tested via simulation on the sample I′, driving by this way the 

classification of the |I′| in-sample items. In fact, the value minimising a total cost function is 
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selected per item into I′, and thus it follows that each item is classified into the class 

𝐶𝑘 associated with its best review interval. These in-sample items are then used to train 

different machine learning classifiers for comparison, whose goal is therefore to classify 

the remaining (|I| − |I′|) items into the 𝐾 classes 𝐶𝑘,I without having to resort to an 

exhaustive search on all of them, but only on the values they show on the 𝐽 criteria. 

Some of the features of the analysed inventory system are clarified below: 

• Time is treated as a discrete variable on single time units, called periods (e.g. 

days, weeks, months). All the following time measures are expressed as 

periods. 

• The independence among the items is hypothesised, i.e. a single-item inventory 

system is proposed as in most of the literature related to intermittent demand 

(Section 2.1). 

• The replenishment lead times are considered deterministic.  

• Backorders are allowed for all items, but backordering costs are not available. 

This implies an inventory system constrained by a measure of service level, in 

particular the target service level. 

 

4.  The solution approach 

This section presents our approach. First, the inventory control system adopted is 

explained (Section 4.1).  It is then exhaustively simulated on a sample I′ of items 

belonging to I in order to reach the best re-order policy at a single item level (Section 4.2). 

Following this simulation, the 𝐽 classification criteria are defined (Section 4.3), and the 

machine learning classifiers adopted (i.e. SVM and DNN) are presented (Section 4.4). 

 

4.1.  The forecast-based inventory control system 

A periodic review system is employed given its simplicity and compatibility with physical 

warehouse reviews and periodic orders issued to the suppliers, as in the literature (e.g. 

Silver et al. 1998, Syntetos and Boylan 2006). We chose a (𝑅, 𝑆) periodic review, with 

review interval 𝑅 and order-up-to level 𝑆 dynamically computed per item on a forecast 

basis every 𝑅 periods. 𝑆 depends on the time period 𝑡 and the item 𝑖 (𝑆𝑖,𝑡), while 𝑅 needs 

to be established for each item 𝑖 and drives the inventory classification. 

Since time is treated as a discrete variable in periodic order-up-to level policies, let 𝑡 be a 

generic time period at the end of a replenishment cycle of 𝑅 periods. Supposing that 

orders are placed at the very end of the replenishment cycles, on the boundary with the 
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next period, and item 𝑖 has a replenishment lead time of 𝑅𝐿𝑇𝑖 periods, the chronological 

order of events in 𝑡 is assumed as follows: if an order is placed in (𝑡 − 𝑅𝐿𝑇𝑖 − 1), at the 

very end of this period, it arrives at the beginning of period 𝑡; a demand occurs (if it is not-

null) and 𝑆𝑖,𝑡 is re-computed on the forecast basis. The rule for emitting orders is: after 

every 𝑅 periods if the inventory position 𝐼𝑃𝑖,𝑡 (composed of net inventory 𝑁𝐼𝑖,𝑡+ planned 

orders - backorders) is below 𝑆𝑖,𝑡 an order to reach 𝑆𝑖,𝑡 is placed. The inventory position 

(𝐼𝑃𝑖,𝑡) and the net inventory (𝑁𝐼𝑖,𝑡) have different meanings: the former contains the 

balance between issued but not yet delivered orders, and backorder units to be delivered 

as soon as available, the latter is the physical inventory status. If backorders do not occur 

and 𝑅 ≥ 𝑅𝐿𝑇𝑖 + 1, i.e. an order always arrives before the next one is issued, the net 

inventory equals the inventory position. Conversely, if 𝑅 < 𝑅𝐿𝑇𝑖 + 1, replenishment cycles 

are allowed to overlap and a new order can be placed before the last one issued arrives.  

Both Croston’s (CR) (Croston 1972) and the SBA method (Syntetos and Boylan 2005) are 

applied in the experimental analysis as estimators of the mean demand per period. 

Syntetos et al. (2005) establish regions (characterised by the average demand interval and 

squared coefficient of variation) of superior performance for each estimator based on a 

theoretically quantified error measure, assuming the demand occurs as a Bernoulli 

process (i.e. the inter-demand intervals are geometrically distributed). The forecasts for 

period 𝑡 provided by CR and SBA for the item 𝑖 at the end of period (𝑡 − 1) are given 

respectively by: 

 

𝐹𝑖,𝑡(𝐶𝑅) =
�̂�𝑖,𝑡

�̂�𝑖,𝑡
                                                                                                                                    

(1) 

 

𝐹𝑖,𝑡(𝑆𝐵𝐴) = (1 −
𝛼

2
)
�̂�𝑖,𝑡

�̂�𝑖,𝑡
                                                                                                                     

(2) 

 

where: 

 

�̂�𝑖,𝑡 = �̂�𝑖,𝑡−1 + 𝛽(𝑍𝑖,𝑡−1 − �̂�𝑖,𝑡−1)                                                                                                      

(3) 
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�̂�𝑖,𝑡 = �̂�𝑖,𝑡−1 + 𝛾(𝑇𝑖,𝑡−1 − �̂�𝑖,𝑡−1)                                                                                                        

(4) 

 

are the estimated demand size (Equation 3) and interval (Equation 4), updated by a single 

exponential smoothing at the end of the periods in which the demand occurs. 𝑍𝑖,𝑡−1 is the 

actual value of the demand, and 𝑇𝑖,𝑡−1 is the actual value of the time between consecutive 

transactions. 

Since a pure cost objective function (composed of holding, backordering and ordering 

costs) cannot be evaluated due to the unavailability of backordering costs, a constraint 

perspective is suggested. In this scenario the minimisation of a cost function including the 

holding and ordering cost is pursued, while satisfying a pre-specified service level. Two 

common alternatives to define the service level are the Cycle Service Level (𝐶𝑆𝐿), i.e. the 

probability of not incurring a backorder during a replenishment cycle, and the fill rate, i.e. 

the fraction of demand that is satisfied directly from the stock on hand. For an in depth 

analysis, see Chopra and Meindl (2004).  

We use the 𝐶𝑆𝐿 for safety stock calculation by defining a target 𝐶𝑆𝐿 (𝑡𝐶𝑆𝐿𝑖) for each item 𝑖. 

For instance, in an assembly process, the base unit is required upstream of the flow, its 

criticality being very high since its shortage may affect all the subsequent stages. The 

higher the criticality of an item, the higher its 𝑡𝐶𝑆𝐿𝑖 assigned by a decision-maker. 

When applying a forecast-based stock control, the variance of forecast errors can be used 

to calculate the safety stocks necessary to achieve 𝑡𝐶𝑆𝐿𝑖. According to Syntetos et al. 

(2010), the single exponential smoothing of the mean squared error (MSE) provides an 

estimator of the variance as follows: 

 

 𝑀𝑆𝐸𝑖,𝑡 = 𝛿(𝐷𝑖,𝑡−1 − 𝐹𝑖,𝑡−1)
2 + (1 − 𝛿)𝑀𝑆𝐸𝑖,𝑡−1                                                                            

(5) 

 

where (𝐷𝑖,𝑡−1 − 𝐹𝑖,𝑡−1) is the difference between the actual demand in (𝑡 − 1) and the 

corresponding forecast (Equations 1 and 2) computed at the end of period (𝑡 − 2). 

Syntetos et al. (2010) recommend using low smoothing parameters 𝛼, 𝛽, 𝛾 and 𝛿, a 

conclusion reached by empirical investigation. 

In order to dynamically compute 𝑆𝑖,𝑡 at the end of period (𝑡 − 1), the following equation is 

applied: 
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𝑆𝑖,𝑡 = (𝑅𝐿𝑇𝑖 + 𝑅)𝐹𝑖,𝑡 + 𝜙𝑖
−1(𝑡𝐶𝑆𝐿𝑖)√𝑀𝑆𝐸𝑖,𝑡(𝑅𝐿𝑇𝑖 + 𝑅)                                                                

(6) 

 

where 𝜙𝑖(. ) is the cumulative distribution function of the demand over (𝑅𝐿𝑇𝑖 + 𝑅). The first 

right-hand-side term corresponds to the forecast demand for periods (𝑅𝐿𝑇𝑖 + 𝑅) in a 

stationary mean model, with 𝐹𝑖,𝑡 given either by Equation 1 (CR) or Equation 2 (SBA). The 

second term is the safety stock required to reach 𝑡𝐶𝑆𝐿𝑖 by applying a safety factor of 

𝜙𝑖
−1(𝑡𝐶𝑆𝐿𝑖). 

In summary, given either CR or SBA as the forecasting method, the following parameters 

depend directly on item 𝑖: 

• 𝑅𝐿𝑇𝑖 is deterministic and given for each item 𝑖. 

• 𝑡𝐶𝑆𝐿𝑖 refers to the criticality level of item 𝑖. It can be assigned using an MCIC 

method associating a unique 𝑡𝐶𝐿𝑆 to each item class. 

• 𝜙𝑖
−1(𝑡𝐶𝑆𝐿𝑖) depending on distributional assumptions in the project. 

All the other parameters can be optimised (Section 4.2). 

This inventory system can also be applied to non-intermittent demands, in this case 

Croston’s estimator (Equation 1) becomes a single exponential smoothing. Conversely, 

the SBA contains a corrective factor, introduced ad hoc for intermittent demands by 

Syntetos and Boylan (2005). Nevertheless, the exhaustive search enables all the 

predictors to be tested and all factors to be optimized. 

 

4.2.  Exhaustive simulation of the in-sample items 

The forecast method (CR or SBA) and the parameter settings (𝛼, 𝛽, 𝛾, 𝛿 and 𝑅) need to be 

established per item. Given a time horizon of 𝑇 periods, 𝛼, 𝛽, 𝛾, 𝛿 are optimised per item in 

a warm-up period of the first 𝑛 periods by minimising the mean squared error between 

demands and estimators. The performance of the inventory system obtained by changing 

𝑅 among 𝐾 values is collected for the remaining (𝑇 − 𝑛) periods. For a fixed 𝑅, this 

performance is given by the net inventory 𝑁𝐼𝑖,𝑡,𝑅 and the emitted orders 𝑁𝑂𝑖,𝑡,𝑅 for each 

period 𝑡 between (𝑛 + 1) and 𝑇, defined as: 
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𝑁𝑂𝑖,𝑡,𝑅 = {
1
 
0
                                                                                                                                                      

(7) 

 

The total relevant cost (𝑇𝑅𝐶𝑖,𝑅) per period depends on the review interval 𝑅 as follows: 

 

𝑇𝑅𝐶𝑖,𝑅 = ℎ𝑖 ∙ 𝐶𝑖 ∙ ∑
𝑁𝐼𝑖,𝑡,𝑅

𝑇−𝑛
𝑇
𝑡=𝑛+1 + 𝑜𝑖 ∙ ∑

𝑁𝑂𝑖,𝑡,𝑅

𝑇−𝑛
𝑇
𝑡=𝑛+1                                                                           

(8) 

 

where the first and second terms are the average holding and ordering costs per time 

period, respectively. ℎ𝑖 is the unitary holding cost, defined as the percentage of the unitary 

purchasing cost 𝐶𝑖 for holding item 𝑖 in stock for a certain period, while 𝑜𝑖 is the unit 

ordering cost. 

The 𝑅 minimizing 𝑇𝑅𝐶𝑖,𝑅 (Equation 8) is selected for each item 𝑖. This is the most efficient 

𝑅 in terms of 𝑇𝑅𝐶𝑖,𝑅 after optimizing all the forecasting parameters. 

The 𝑅 selected for each item is the driver for classifying the |I′|in-sample items into 𝐾 

classes from an inventory perspective, that is all the items 𝑖 ∈ I′ are now classified into a 

class 𝐶𝑘, with 𝑘 = 1, … , 𝐾. These items are therefore the references used for classifying the 

whole population of |I| items by means of 𝐽 classification criteria (Section 4.3). Given 

Equation 8, it is possible to calculate a theoretically optimal value of 𝑅 for each 𝑖 by solving 

Equation 51 (see Appendix A). In Section 5.3 this theoretical classification is compared 

with those achieved by the machine learning classifiers. 

 

4.3.  Classification criteria 

In this work, the classification is inventory-oriented. The criteria expected to impact on the 

performance of the inventory control system, and consequently the item classification, are 

selected. These criteria belong to two different groups, which refer to the statistics of the 

time series and the characteristics of the items, respectively. 

The first group includes the parameters required for setting the demand generation. They 

refer to the two stochastic variables of an intermittent demand process, i.e. the inter-arrival 

between successive demands and the positive demand size: 

If an order of item 𝑖 is emitted in time period t with review interval R 

Otherwise 
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• Expected value of the positive demand probability 𝐸(𝑝𝑖), which is calculated as the 

ratio between the number of periods with positive demands and the total number of 

periods over T.  

• Expected value of the positive demand size 𝐸(𝐷𝑖
+), which is calculated as the ratio 

between the number of periods with positive demands and the total number of 

periods over T.   

• Expected value of the standard deviation of the positive demand 𝐸[𝑆𝑡𝑑(𝐷𝑖
+)], which 

is calculated as √𝑀𝑆𝐸𝑖 over T. 

The second group of criteria derives from the inventory control system as well as from the 

approach adopted for the selection of the best policy per item: 

• Relative unitary cost 
𝑜𝑖

𝐶𝑖ℎ𝑖
. 

• Safety factor 𝜙𝑖
−1(𝑡𝐶𝑆𝐿𝑖). 

To generalise the subsequent sections, it is assumed that 𝐽 criteria have been assessed 

for the item classification, and that an item 𝑖 shows a value 𝑥𝑖𝑗 on criterion 𝑗, with 𝑖 =

1, … , |I| and 𝑗 = 1,… , 𝐽. 

 

4.4.  Machine learning classifiers 

Two machine learning classifiers are used: 

• Support vector machine (SVM) with radial basis function kernel (Vapnik, 1999). 

• Deep neural network (DNN) (Bishop, 2006). 

Both algorithms can be very effective in non-linear contexts and present a limited number 

of meta-parameters to be optimized. 

For the SVM, the meta-parameters are: 

• Box constraint (𝐶), penalty applied to incorrectly separated items. 

• Kernel scale (𝑠𝑐𝑎𝑙𝑒), the radial basis function kernel is multiplied by this scale 

factor. 

While for the DNN, the relevant meta-parameters are: 

• Number of hidden layers (𝑁ℎ𝑖𝑑𝑑𝑒𝑛). 

• Number of neurons per hidden layer (𝑁𝑛𝑒𝑢𝑟𝑜𝑛𝑠). 

For each algorithm and meta-parameter, a tenfold cross-validation is applied to assess the 

combination performance. A fold uses nine tenths of the items available (training set) to 

train the method and the remaining one tenth to predict the classes (validation set). The 

overall performance is evaluated by pooling the validation set predictions and 
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reconstructing the original dataset, these pooled predictions are evaluated against the true 

classes of items and the ratio of correct predictions is measured. An optimal set of meta-

parameters for each algorithm is identified as the one maximizing the prediction 

performance. 

This cross-validation strategy enables the meta-parameters to be optimized while 

leveraging the entire dataset and limiting the impact of the single fold division on the 

measured performance. 

 

4.4.1  SVM with radial basis function kernel 

The standard SVM is a two-class linear classifier dividing the features space with a 

hyperplane. The hyperplane is designed to maximize the margin (𝑚), double the distance 

between the hyperplane and its closest items in the features space, whilst maintaining the 

correct class division. 

The distance between the hyperplane (�⃗⃗� 𝑇𝑥 + 𝑏) and item 𝑖 is: 

 

𝑟𝑖 =
�⃗⃗� 𝑇𝑥 𝑖+𝑏

‖�⃗⃗� ‖
                                                                                                                                         

(9) 

 

If 𝑖 is one of the closest items, then 𝑥 𝑖 is a support vector and 𝑟𝑖 equals 
𝑚

2
. 

An item can be classified into class 1 or class -1 according to its relative position to the 

hyperplane: 

 

𝑐𝑙𝑎𝑠𝑠𝑖 = 𝑠𝑖𝑔𝑛(�⃗⃗� 
𝑇𝑥 𝑖 + 𝑏).                                                                                                             

(10) 

 

Following this notation, the optimal hyperplane is not well defined as it can be expressed 

by infinite combinations of �⃗⃗�  and 𝑏. To obtain an unambiguous optimal solution, the 

following notational constraint is imposed: 

 

|�⃗⃗� 𝑇𝑥 𝑆𝑉 + 𝑏| = 1                                                                                                                              

(11) 

 

where 𝑥 𝑆𝑉 is any support vector. 
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This constraint does not change the optimal solution but enables 𝑚 to be expressed in a 

simple form: 

 

𝑚 = 2
�⃗⃗� 𝑇𝑥 𝑆𝑉+𝑏

‖�⃗⃗� ‖
=

2

‖�⃗⃗� ‖
                                                                                                                      

(12) 

 

The constraints bounding the items to their correct class are also expressed in simple 

terms. The original equations of the constraints are: 

 

�⃗⃗� 𝑇𝑥 𝑖+𝑏

‖�⃗⃗� ‖
≤

𝑚

2
     𝑖𝑓 𝑦𝑖 = −1                                                                                                                

(13) 

�⃗⃗� 𝑇𝑥 𝑖+𝑏

‖�⃗⃗� ‖
≥

𝑚

2
     𝑖𝑓 𝑦𝑖 = 1                                                                                                                   

(14) 

 

where 𝑦𝑖 is the true class of item 𝑖, and becomes: 

 

�⃗⃗� 𝑇𝑥 𝑖 + 𝑏 ≤ 1     𝑖𝑓 𝑦𝑖 = −1                                                                                                            

(15) 

�⃗⃗� 𝑇𝑥 𝑖 + 𝑏 ≥ 1     𝑖𝑓 𝑦𝑖 = 1                                                                                                               

(16) 

 

The optimization problem can be expressed with quadratic programming as: 

 

𝑚𝑖𝑛    ‖�⃗⃗� ‖2                                                                                                                                      

(17) 

s.t. 

 𝑦𝑖(�⃗⃗� 
𝑇𝑥 𝑖 + 𝑏) ≥ 1     ∀𝑖 = 1, … , |𝐼

′|                                                                                         

(18) 

 

This optimization problem can be rewritten with the Wolfe Dual as: 
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𝑚𝑎𝑥    ∑ 𝛼𝑖
|𝐼′|

𝑖=1 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑙𝑦𝑖𝑦𝑙𝑥 𝑖

𝑇𝑥 𝑙
|𝐼′|

𝑙=1

|𝐼′|

𝑖=1                                                                                      

(19) 

s.t. 

∑ 𝛼𝑖𝑦𝑖
𝐼
𝑖=1 = 0                                                                                                                        

(20) 

 𝛼𝑖 ≥ 0     ∀𝑖 = 1,… , |𝐼
′|                                                                                                        

(21) 

 

where the solution to the primal problem is: 

 

�⃗⃗� = ∑ 𝛼𝑖𝑦𝑖𝑥 𝑖
|𝐼′|

𝑖=1                                                                                                                                

(22) 

𝑏 = 𝑦𝑙 − ∑ 𝛼𝑖𝑦𝑖𝑥 𝑖
𝑇𝑥 𝑙

|𝐼′|

𝑖=1      ∀𝑙: 𝛼𝑙 ≠ 0                                                                                             

(23) 

 

It is possible to implement the SVM in cases when the dataset is not linearly separable. In 

these cases, the system is allowed to incorrectly classify some examples, thus paying a 

price in the objective function. The incorrect classification penalty is a box constraint  𝐶 

multiplied by the classification error, this SVM is called soft margin SVM. 

 

min     ‖�⃗⃗� ‖2 + 𝐶 ∑ 휀𝑖
|𝐼′|

𝑖=1                                                                                                                   

(24) 

s.t. 

𝑦𝑖(�⃗⃗� 
𝑇𝑥 𝑖 + 𝑏) ≥ 1 − 휀𝑖     ∀𝑖 = 1,… , |𝐼

′|                                                                               

(25) 

 

Its Wolfe Dual is: 

 

max    ∑ 𝛼𝑖
𝐼
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑙𝑦𝑖𝑦𝑙𝑥 𝑖

𝑇𝑥 𝑙
|𝐼′|

𝑙=1

|𝐼′|

𝑖=1                                                                                      

(26) 

s.t. 
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∑ 𝛼𝑖𝑦𝑖
|𝐼′|

𝑖=1 = 0                                                                                                                        

(27) 

𝐶 ≥ 𝛼𝑖 ≥ 0     ∀𝑖 = 1,… , |𝐼
′|                                                                                                 

(28) 

 

With the primal problem solution: 

 

�⃗⃗� = ∑ 𝛼𝑖𝑦𝑖𝑥 𝑖
|𝐼′|

𝑖=1                                                                                                                                

(29) 

𝑏 = 𝑦𝑙(1 − 휀𝑙) − ∑ 𝛼𝑖𝑦𝑖𝑥 𝑖
𝑇𝑥 𝑙

|𝐼′|

𝑖=1      ∀𝑙: 𝛼𝑙 ≠ 0                                                                                

(30) 

 

This SVM classifier can be made non-linear by substituting the features' internal product 

𝑥 𝑖
𝑇𝑥 𝑙 with a non-linear kernel 𝑘(𝑥 𝑖, 𝑥 𝑙). This is equivalent to a non-linear expansion of the 

features space. What was non linearly separable in the original space might be linearly 

separable in the new one. The use of a kernel (called the kernel trick) prevents the 

computational costs associated with the calculation of the new features space. 

The kernel used in this paper is the radial basis function: 

 

𝑘(𝑥 𝑖, 𝑥 𝑙) = 𝑒
−𝑠𝑐𝑎𝑙𝑒∙‖𝑥 𝑖−𝑥 𝑙‖

2
                                                                                                              

(31) 

 

The radial basis function is a well-established kernel, capable of achieving a significant 

performance while dealing with non-linear datasets. 

The SVM classifier can be used in contexts with more than two classes by training a 

classifier for each pair of classes. When a new item 𝑖 needs to be classified, it is fed to 

each SVM and the results are compared using an error-correcting output code model 

(ECOC) (Escalera et al. 2009). In a three-class model, the ECOC is: 

 

𝐸𝐶𝑂𝐶 = (
  1   1   0
−1   0   1
  0 −1 −1

)                                                                                                              

(32) 
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The item 𝑖 is associated with the class minimizing: 

 

𝑚𝑖𝑛   ∑ ∑
𝑚𝑎𝑥(0,1−𝐸𝐶𝑂𝐶𝑖,𝑙∙𝑠𝑖)

2

𝐽
𝑙=1

𝐽
𝑗=1                                                                                                     

(33) 

 

where 𝑠 𝑖 is a logical vector representing the class that item 𝑖 is classified in. In a three-

class model: 

 

𝑠 𝑖 = (1,0,0)     𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐𝑙𝑎𝑠𝑠                                                                                    

(34) 

𝑠 𝑖 = (0,1,0)     𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑙𝑎𝑠𝑠                                                                                 

(35) 

𝑠 𝑖 = (0,0,1)     𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑐𝑙𝑎𝑠𝑠                                                                                    

(36) 

 

4.4.2  Deep neural network 

A DNN is a multiclass non-linear classifier that passes the item features 𝑥 𝑖 through a set of 

layers and outputs a vector 𝑠 𝜖𝑅𝐾, where 𝑠𝑘 (i.e. the 𝑘th component of 𝑠 ) is the probability 

that 𝑖 belongs to a certain class 𝐶𝑘,I. 

As shown in Figure 1, each layer is a vector connected to the next one through a matrix of 

weights 𝑊𝑙 and a set of non-linear functions. In this structure, we consider 𝑥 𝑖 and 𝑠  as the 

input and output layers and 𝑧 𝑙 with 𝑙 = 1, … ,𝑁ℎ𝑖𝑑𝑑𝑒𝑛 as hidden layers. Alongside 𝑊𝑙, the 

non-linear functions in layer 𝑙 are obtained by a vector of biases �⃗� 𝑙 not represented in 

Figure 1. Each element of bias 𝑏𝑙𝑗 enters one of the functions preceding layer 𝑙. The last 

function is linked to layer 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 by a matrix of weights 𝑊𝑠𝑜𝑓𝑡𝑚𝑎𝑥 and a vector of biases 

�⃗� 𝑠𝑜𝑓𝑡𝑚𝑎𝑥. 

 

 

1
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I
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𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑤𝑠𝑜𝑓𝑡𝑚𝑎𝑥11
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Figure 1. Deep neural network structure. 

 

𝑧 1 is linked to 𝑥 𝑖 by the equation: 

 

𝑧 1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊1 ∙ 𝑥 𝑖 + �⃗� 1)                                                                                                           

(37) 

 

where the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function of 𝑊1 ∙ 𝑥 𝑖 + �⃗� 1 is: 

 

𝑧 1 =
1⃗⃗ 

1⃗⃗ +𝑒−𝑊1∙�⃗⃗� 𝑖−�⃗⃗�
 1

                                                                                                                              

(38) 

 

The same logic applies to each layer 𝑧 𝑙 with 𝑙 = 1,… ,𝑁ℎ𝑖𝑑𝑑𝑒𝑛. 

 

𝑧 𝑙 =
1⃗⃗ 

1⃗⃗ +𝑒−𝑊𝑙−1∙�⃗� 𝑙−1−�⃗⃗�
 
𝑙−1

                                                                                                                      

(39) 

 

𝑠 𝑖 is linked to 𝑧 𝑁 𝑖     by the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function: 

 

𝑠𝑖𝑘 =
𝑒
�⃗⃗⃗� 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘
𝑇 ∙�⃗� 𝑁 𝑖    

+𝑏𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘

∑ 𝑒
�⃗⃗⃗� 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘
𝑇 ∙�⃗� 𝑁 𝑖    

+𝑏𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘𝐽
𝑗=1

                                                                                             

(40) 

 

From Equation 39, each layer is linearly combined using weights and biases to produce 

the next one. If only linear equations were applied, the final result would be a multivariate 

logistic regression, i.e. a linear classifier using 𝑥 𝑖 as an input. This is due to the fact that a 

combination of linear functions is a linear function. In order to add non-linearity, the 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function must be used after each linear combination. The 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 collapses each 

vector component in the range (−1,1), making each 𝑧 𝑙 a non-linear combination of the 

previous layer components. From Equation 40, 𝑠 𝑖 is a multivariate logistic regression of 

𝑧 𝑁 𝑖    , a linear classification of the new features as they emerge from the last hidden 

layer. The use of a linear classifier in the final layer is common to DNN and SVM with the 
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radial basis function kernel; both algorithms expand the features space and use linear 

classifiers to obtain non-linear classifications in the original space. 

The performance of DNN can be measured by a cross-entropy (𝑐𝑟𝑜𝑠𝑠𝑖) function: 

 

𝑐𝑟𝑜𝑠𝑠𝑖 = −𝑦 𝑖
𝑇 ∙ 𝑙𝑜𝑔(𝑠 𝑖)                                                                                                                   

(41) 

 

The 𝑐𝑟𝑜𝑠𝑠𝑖 function is minus the log-likelihood of the multivariate logistic regression 

classifier used in the output layer, the performance of DNN can be optimized by minimizing 

the overall cross-entropy of the training set: 

 

𝑐𝑟𝑜𝑠𝑠 = ∑ 𝑐𝑟𝑜𝑠𝑠𝑖
|𝐼′|

𝑖=1                                                                                                                         

(42) 

 

This optimization is carried out by modifying the weights and biases of each layer, 

including the output one. In order to know how to modify weights and biases, the gradient 

of 𝑐𝑟𝑜𝑠𝑠 is obtained. Using the multivariable chain rule it is possible to calculate the 

derivatives of 𝑐𝑟𝑜𝑠𝑠 over 𝑊𝑙 and �⃗� 𝑙 for the layer 𝑙 from the gradient of 𝑐𝑟𝑜𝑠𝑠 over 𝑧 𝑙+1. This   

facilitates an efficient reuse of calculations with a considerable computational time saving. 

Once each derivative has been computed, a gradient descend algorithm is applied to 

move the value of 𝑐𝑟𝑜𝑠𝑠 downwards, thus increasing the DNN performance on the training 

set. This procedure is called backpropagation. 

In this paper, part of the training set (30%), as defined in Section 4.4, is used as a holdout. 

It is not directly fed to the backpropagation algorithm for the DNN training, but is kept aside 

to check the 𝑐𝑟𝑜𝑠𝑠 performance on it as an unseen dataset. This prevents overfitting since 

the backpropagation is stopped after reaching the lowest 𝑐𝑟𝑜𝑠𝑠 on the holdout set. In 

practice weights and biases of the best performing DNNs are memorized as they emerge 

and the backpropagation algorithm is stopped after a certain number of suboptimal results. 

In this paper, the optimization algorithm used is a scaled conjugated gradient descent 

backpropagation due to its effectiveness and not excessive computational complexity. 

 

5.  Experimental analysis 

The procedure outlined in Section 4 is applied to two datasets generated in Section 5.1. 
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The first dataset contains items with a small relative standard deviation in terms of the 

positive demands (
𝐸[𝑆𝑡𝑑(𝐷𝑖

+)]

𝐸(𝐷𝑖
+)

). This feature produces fewer intermittent time series, since 

the main source of variability relates to the appearance of positive demands rather than 

the quantities of the positive demands themselves. The second dataset contains items 

with higher values of (
𝐸[𝑆𝑡𝑑(𝐷𝑖

+)]

𝐸(𝐷𝑖
+)

), and the resulting time series are more intermittent since 

the positive demand quantities are less predictable. 

Each time series is obtained using two probability distributions, i.e. a Bernoulli distribution 

generating the positive demand events and a normal distribution generating the quantities 

demanded when a positive demand takes place. When in the series generation, a positive 

demand assumes values lower than zero, as a result of the unrestricted normal distribution 

domain, this demand is approximated to zero in the first dataset, whereas it is recalculated 

in the second one. 

In Section 5.2, both datasets are simulated and the classification methods introduced in 

Section 4.4 are applied leading to 12 experiments, in Section 5.3 the classification results 

are analysed. 

 

5.1  Experimental setting 

Two experimental datasets are generated, the first one composed of 28,350 time series 

and the second one containing 39,690 time series. Each time series is randomly 

generated on a time horizon of 𝑇 = 40,000 periods with a warm-up of 𝑛 = 20,000 periods. 

The following features, uniformly distributed between different ranges, generate each time 

series: 

• 𝐸(𝑝𝑖) between 0.2 and 0.7 with linear steps of 0.1. 

• 𝐸(𝐷𝑖
+) between 100 and 500 with linear steps of 50. 

• 
𝐸[𝑆𝑡𝑑(𝐷𝑖

+)]

𝐸(𝐷𝑖
+)

 between 0.1 and 0.3 with linear steps of 0.05 for the first dataset and 

between 0.7 and 1 with linear steps of 0.05 for the second one. 

Non statistical features: 

• ℎ𝑖 ∙ 𝐶𝑖 between 2 and 14 with linear steps of 4. 

• 𝑅𝐿𝑇𝑖 equal to 2. 

• 𝜙𝑖
−1(𝑡𝐶𝑆𝐿𝑖) between 1 and 4 with linear steps of 0.5. 

The unitary ordering cost 𝑜𝑖 is obtained defining the theoretical 𝑅𝑡ℎ,𝑖 equal to 3, 5 and 7 

and applying Equation 50 in Appendix A. 



22 

 

 

5.2.  Exhaustive simulation and classification 

Given a dataset, each item time series is exhaustively simulated through the inventory 

system detailed in Sections 4.1 and 4.2. A warm-up of 𝑛 = 20.000 periods is used to 

optimize, at the single item level, the smoothing coefficients 𝛼, 𝛽, 𝛾 and 𝛿, thus minimising 

the mean squared error between forecast and demand. The parameters 𝛼, 𝛽, and 𝛾 are 

optimized continuously, while 𝛿 is fixed at 0.25. Three values of 𝑅 (equal to 3, 5, and 7 

periods) are tested for each time series and the value leading to the minimum 𝑇𝑅𝐶𝑖,𝑅 is 

selected. 

At the end of this procedure, each item has both a set of classification criteria defined in 

Section 4.3 and an experimentally optimal value of 𝑅, named 𝑅𝑜𝑝𝑡,𝑖. The objective is to 

measure the performance of the classification methods outlined in Section 4.4. Therefore, 

six classification experiments are conducted on each dataset. Each experiment involves a 

different combination of numbers of cross-validation training folds and classifiers. Since 

the folds are used for training purposes, the higher the number of folds, the lower the ratio 

of items used in each training set. 

 

Dataset 1 

 Simulation 1 Simulation 2 Simulation 3 

SVM 50 folds 20 folds 10 folds 

DNN 50 folds 20 folds 10 folds 

Dataset 2 

SVM 50 folds 20 folds 10 folds 

DNN 50 folds 20 folds 10 folds 

Table 1. Number of classification experiments. 

 

Table 1 outlines all the experiments, for instance the 20 fold SVM test divides a dataset 

into 20 folds. In this case 5% of the dataset items (training set) are used to train a radial 

basis function SVM which is then used to classify the items outside the fold (95% of the 

dataset items, i.e. test set), the resulting classes are compared with the real test set 

classes to obtain performance measures. This procedure is repeated for each fold and, at 

the end, the single performance measures are averaged. 

Two performance measures are obtained for each experiment: 

• The average correct classification ratio. 
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• The average confusion matrix. 

The correct classification ratio is the ratio of correctly classified items in the test set over 

the total number of items in the test set. The average correct classification ratio is the 

average of these classification ratios over the number of folds. 

The confusion matrix is a 𝐾 × 𝐾 matrix containing a ratio of the test set items in each cell. 

The cell 𝑖, 𝑗 for instance contains the number of items that the simulation sorted in class 𝑖 

and the classifier classified in class 𝑗, divided by the total number of items in the test set. 

The trace of the confusion matrix equals the correct classification ratio. The confusion 

matrix belonging to different folds is averaged cell-wise, weighting for the number of items 

in each test set, to obtain the average confusion matrix. 

The meta-parameters analysed in each training fold to train a SVM are: 

• 𝐶 distributed between 10−5 and 105 with geometrical steps of magnitude 10. 

• 𝑠𝑐𝑎𝑙𝑒 distributed between 10−5 and 105 with geometrical steps of magnitude 10. 

The meta-parameter analysed in each training fold to train a DNN are: 

• 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 distributed between 1 and 3 with linear steps of 1. 

• 𝑁𝑛𝑒𝑢𝑟𝑜𝑛𝑠 distributed between 10 and 100 with linear steps of 10. 

This meta-parameter optimization follows the procedure outlined in Section 4.4 and is 

carried out inside each training fold without using any test fold sample. 

 

5.3.  Results 

Table 2 contains the average correct classification ratio for each experiment, Table 3 

contains the average confusion matrixes. The sum of probabilities exceeding 1 result from 

the rounding process. 

 

 Dataset 1 Dataset 2 

SVN 0.972 0.977 0.982 0.972 0.980 0.983 

DNN 0.954 0.972 0.978 0.963 0.975 0.981 

Table 2. Average correct classification ratio. 

 

 

 

 

 

 

Dataset 1 

Simulation 1 Simulation 2 Simulation 3 

 
Predicted 

 
Predicted 

 
Predicted 

A B C A B C A B C 



24 

 

SVN 

True 

A 0.538 0.006 0 

True 

0.539 0.006 0 

True 

0.540 0.004 0 

B 0.010 0.227 0.006 0.009 0.230 0.004 0.009 0.232 0.003 

C 0 0.006 0.207 0 0.004 0.208 0 0.002 0.210 

 

 

DNN 

  Predicted  Predicted  Predicted 

True 

A 0.528 0.014 0.003 

True 

0.537 0.007 0 

True 

0.539 0.006 0 

B 0.011 0.222 0.010 0.009 0.227 0.007 0.009 0.231 0.004 

C 0 0.009 0.203 0 0.005 0.207 0 0.003 0.209 

 

 

 

SVN 

 
Dataset 2 

 Predicted  Predicted  Predicted 

True 

A 0.670 0.008 0 

True 

0.673 0.005 0 

True 

0.674 0.005 0 

B 0.008 0.196 0.006 0.006 0.200 0.004 0.005 0.201 0.004 

C 0 0.006 0.106 0 0.005 0.107 0 0.004 0.108 

 

 

DNN 

  Predicted  Predicted  Predicted 

True 

A 0.667 0.011 0 

True 

0.671 0.007 0 

True 

0.673 0.005 0 

B 0.011 0.191 0.008 0.007 0.1972 0.005 0.005 0.200 0.005 

C 0 0.007 0.105 0 0.005 0.107 0 0.005 0.107 

Table 3. Average confusion matrix. 

 

Three phenomena can be assessed by analysing Table 2: 

1. The average correct classification ratio increases as the percentage of items in the 

training set increases, these increments are small but are present in each 

combination of dataset and classification methodology. 

2. The second dataset, which is the most intermittent, achieves a better performance 

than the first. This is true for each combination of classification methodology and 

training percentage. 

3. The SVM outperforms the DNN in each combination of dataset and training 

percentage, the differences are small but always in favour of the SVM. 

Figure 2 plots the results of Table 2 against the number of items in the average training 

set. It shows that the first and second phenomenon listed above are generated by a single 

cause: the average correct classification ratio scales with the number of items in the 

average training set. The differences between datasets alone are not obvious from the plot 

and the performance seems to scale more consistently with the absolute number of items 

in the average training set than with its relative one. Figure 2 shows how the performance 

gap between SVM and DNN depends on the number of items in the average training set, 
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and the gap shrinks as the number of items increases. Despite this trend, SVM always 

outperforms DNN. 

 

 

Figure 2. Average correct classification ratio over the number of items in the training set. 

 

The average confusion matrices in Table 3 show that, despite the imbalance between 

classes, the classifiers do not overfit the most common class (𝑅 = 3). This finding is 

consistent throughout the datasets, classifiers and training percentages. Since no 

preventive measures have been taken beforehand to prevent overfitting phenomena, the 

classifiers appear robust in dealing with unbalanced classes. 

 

Dataset 1 0.725 

Dataset 2 0.561 

Table 4. Theoretical classification ratio. 

 

Table 4 shows the theoretical correct classification ratio for both datasets.  This is obtained 

by numerically solving Equation 51 in Appendix A, comparing the theoretical classes with 

those emerging from the simulations. The theoretical model performance in both datasets 

is worse than that achieved by the supervised classifiers and decreases as the data 

become more intermittent. This is exemplified by the 0.164 performance drop between the 

first and second datasets. The theoretical confusion matrixes in Table 5 show how as the 
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items become more intermittent, they shift away from their theoretical classification 

towards lower values of the best 𝑅. The classification algorithms are able to adapt and 

catch this drift, with the subsequent increased class imbalance, while the theoretical 

classification does not. 

 

Dataset 1 Dataset 2 

 Predicted  Predicted 

A B C A B C 

True A 0.333 0 0 True A 0.333 0 0 

B 0.154 0.180 0 B 0.218 0.115 0 

C 0.058 0.064 0.212 C 0.127 0.094 0.112 

Table 5. Theoretical confusion matrix. 

 

6.  Conclusions and further research 

Managing a large number of items involves both multi-criteria inventory classification 

methods and inventory control theory. A common solution is to classify similar items first 

and then define a unique inventory control policy for all the items belonging to a class. The 

tasks of classifying and finding appropriate control policies for the classes are generally 

kept separate, and as a result the original objective is often forgotten. When the items 

demonstrate intermittent consumption, e.g. spare-parts or multi-stage assembly with a 

high level of differentiation and customer heterogeneity, this issue is further exacerbated.  

In this paper, given a forecast-based periodic review inventory system, an exhaustive 

search on a sample of items is performed to obtain in the first stage, their best 

classification from an inventory perspective. This step is coupled with SVM and DNN 

algorithms to classify the out-of-sample items, using the aforementioned classification as 

an optimum reference along with the relevant set of criteria from an inventory control 

perspective.  

The overall approach was validated through a large experimentation with satisfactory 

results, both classifiers lead to significant improvements in the classification accuracy in 

comparison with a theoretical approach. 

We believe that our proposal is an interesting attempt to bridge the gap between inventory 

theory and multi-criteria inventory classification since they are strictly interrelated research 

fields. The decision to apply this methodology to intermittent demand is due to the highest 

analytical and operative criticality of this type of demand pattern, however the adopted 
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inventory system is flexible and the overall framework is absolutely general and thus 

applicable to other inventory systems and demand patterns. 

It is worth highlighting the importance of adopting an exhaustive search in order to fix a set 

of reference items as inputs for the classification procedures. This is in line with case-

based reasoning for multi-criteria inventory classification, however the reference items are 

optimally classified here and not subjectively established by decision-makers. In other 

words, the classification of the in-sample items, which affects the overall classification, is 

free from human error. This is in line with Industry 4.0 guidelines, which underline the 

increasing need for ICT solutions within manufacturing. Our experimental research 

confirms the positive impact of the exhaustive search and highlights the importance of this 

phase. 

Our proposal has some limitations that could be the subject for further research: 

• This paper adopts a single-item forecast-based inventory system. In the case of 

items used in an assembly process, a multi-item inventory system would be more 

appropriate. The forecasts could be made for the end products and then 

propagated to the components according to the bills of materials.  

• The analysed datasets were generated in order to better control the experimental 

procedure. However, real data might enrich the validation of this approach. 

• Other inventory systems could be evaluated and compared with the one 

implemented here.   

  

Appendix A 

This appendix outlines the calculation of a theoretically optimal value for 𝑅 given the 

inventory system and replenishment policy under analysis. The results obtained act both 

as a benchmark for the machine learning algorithms presented and as a tool for the 

simulation setup. 

Simulating a random interval of features could in fact lead to a strong imbalance between 

the classes, with one class encompassing the vast majority of the series, while in real 

world applications, different codes require different review intervals. 

The total cost 𝑇𝑅𝐶𝑖,𝑅 can be minimized over 𝑅 by rewriting it as: 

 

𝑇𝑅𝐶𝑖,𝑅 = ℎ𝑖 ∙ 𝐶𝑖 ∙ 𝐸(𝑁𝐼𝑖,𝑅) + 𝑜𝑖 ∙ 𝐸(𝑁𝑂𝑖,𝑅)                                                                                    

(43) 
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where 𝐸(𝑁𝐼𝑖,𝑅) is the expected value of the net inventory in a period and 𝐸(𝑁𝑂𝑖,𝑅) is the 

expected number of orders in a period. Both these variables depend on 𝑅. 

𝐸(𝑁𝐼𝑖,𝑅) represents both a component related to the inventory cycle and a component 

related to the safety stock 𝑆𝑆𝑖. 

 

𝐸(𝑁𝐼𝑖,𝑅) =
1

2
𝑂𝑖 + 𝑆𝑆𝑖                                                                                                                      

(44) 

 

The cyclic component is maximized after each lead-time, when the ordered replenishment 

of quantity 𝑂𝑖 arrives. After this replenishment, the cyclic inventory decreases and 

eventually drops to zero just in time for a new order to arrive, thus the average stock in a 

random period is half the maximum stock. This assumption is on average correct for a 

normally distributed non-intermittent demand and is applied here as an approximation. The 

safety stock component 𝑆 is constant on average. 

The order quantity is designed to cover 𝑅𝑇𝐿𝑖 + 𝑅 demand periods, thus: 

 

𝑂𝑖 = 𝐸(𝐷𝑖) ∙ 𝑝𝑖 ∙ (𝑅𝑇𝐿𝑖 + 𝑅)                                                                                                           

(45) 

 

On the other hand, the safety stock is related to the safety factor and the single period 

variance: 

 

𝑆𝑆𝑖 = ϕ
−1(𝑡𝐶𝑆𝐿𝑖)√𝑀𝑆𝐸𝑖 ∙ (𝑅𝑇𝐿𝑖 + 𝑅)                                                                                          

(46) 

 

where the single period demand 𝑀𝑆𝐸𝑖 is equal to: 

 

𝑀𝑆𝐸𝑖 = 𝑝𝑖 ∙ (1 − 𝑝𝑖) ∙ 𝐸(𝐷𝑖)
2 + 𝑝𝑖 ∙ 𝑉𝑎𝑟(𝐷𝑖)                                                                                

(47) 

 

This leads to a 𝑇𝑅𝐶𝑖,𝑅 of: 
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𝑇𝑅𝐶𝑖,𝑅 =
1

2
∙ ℎ𝑖 ∙ 𝐶𝑖 ∙ 𝐸(𝐷𝑖) ∙ 𝑝𝑖 ∙ (𝑅𝑇𝐿𝑖 + 𝑅) + ℎ𝑖 ∙ 𝐶𝑖 ∙ ϕ

−1(𝑡𝐶𝑆𝐿𝑖) ∙ √𝑀𝑆𝐸𝑖 ∙ (𝑅𝑇𝐿𝑖 + 𝑅) +
𝑜𝑖
𝑅𝑇𝐿𝑖

 

(48) 

 

Its derivative over 𝑅𝑇𝐿𝑖 minimizes the total relevant cost: 

 

𝐸(𝐷𝑖) ∙ 𝑝𝑖 −
2∙𝑜𝑖

ℎ𝑖∙𝐶𝑖∙𝑅
2 +

ϕ−1(𝑡𝐶𝑆𝐿𝑖)∙𝑀𝑆𝐸𝑖

√𝑅𝑇𝐿𝑖+𝑅
= 0                                                                                        

(49) 

 

Substituting 𝑀𝑆𝐸𝑖, 𝑜𝑖 is given by: 

 

𝑜𝑖 = 
1

2
∙ ℎ𝑖 ∙ 𝐶𝑖 ∙ 𝑅

2 ∙ 𝐸(𝐷𝑖) ∙ (𝑝𝑖 + 𝜙𝑖
−1(𝑡𝐶𝑆𝐿𝑖) ∙

√
𝑝𝑖∙(1−𝑝𝑖+(

𝑆𝑡 (𝐷𝑖)

𝐸(𝐷𝑖)
)
2

)

𝑅𝐿𝑇𝑖+𝑅
)                                        

(50) 

 

Equation 50 is used in the dataset generation in Section 5.1 to calculate 𝑜𝑖 given the other 

features. 

The best 𝑅 can be computed numerically, calculating the real roots of the polynomial: 

 

𝑅5 ∙ 𝐷𝑖
2𝑝𝑖

2 + 𝑅4 ∙ 𝐷𝑖
2𝑝𝑖 ∙ (𝑝𝑖𝑅𝐿𝑇𝑖 −ϕ

−1(𝑡𝐶𝑆𝐿𝑖)
2 ∙ ((1 − 𝑝𝑖) + (

𝑆𝑡𝑑(𝐷𝑖)

𝐸(𝐷𝑖)
)

2

)) 

−4𝑅 ∙ 𝐷𝑖𝑝𝑖 ∙
𝑜𝑖

ℎ𝑖∙𝐶𝑖
− 4𝑅2 ∙ 𝐷𝑖𝑝𝑖 ∙

𝑅𝐿𝑇𝑖𝑜𝑖

ℎ𝑖∙𝐶𝑖
+ 4𝑅 (

𝑜𝑖

ℎ𝑖∙𝐶𝑖
)
2

+ 4 ∙ 𝑅𝐿𝑇𝑖 (
𝑜𝑖

ℎ𝑖∙𝐶𝑖
)
2

= 0                                

(51) 

 

Equation 51 is used in the results analysis in Section 5.3 to compare theoretical and 

simulated classes. 
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