62 research outputs found

    Evidence for BCR/ABL1‐positive T‐cell acute lymphoblastic leukemia arising in an early lymphoid progenitor cell

    Get PDF
    BCR‐ABL1‐positive leukemias have historically been classified as either chronic myelogenous leukemia or Ph+ acute lymphoblastic leukemia. Recent analyses suggest there may be a wider range of subtypes. We report a patient with BCR‐ABL1 fusion positive T‐cell ALL with a previously undescribed cell distribution of the fusion gene. The examination of sorted cells by fluorescence in situ hybridization showed the BCR‐ABL1 fusion in the malignant T cells and a subpopulation of the nonmalignant B cells, but not nonmalignant T cells or myeloid or CD34+ progenitor cells providing evidence that the fusion may have occurred in an early lymphoid progenitor

    When high similarity copycats lose and moderate similarity copycats gain: The impact of comparative evaluation

    Get PDF
    Copycats imitate features of leading brands to free ride on their equity. The prevailing belief is that the more similar copycats are to the leader brand, the more positive their evaluation is, and thus the more they free ride. Three studies demonstrate when the reverse holds true: Moderate-similarity copycats are actually evaluated more positively than high-similarity copycats when evaluation takes place comparatively, such as when the leader brand is present rather than absent. The results demonstrate that blatant copycats can be less and subtle copycats can be more perilous than is commonly believed. This finding has implications for marketing theory and practice and trademark law

    The MUSIC of Galaxy Clusters I: Baryon properties and Scaling Relations of the thermal Sunyaev-Zel'dovich Effect

    Full text link
    We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) Dataset, one of the largest sample of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using SPH together with relevant physical processes (cooling, UV photoionization, star formation and different feedback processes). We focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC dataset both as a function of aperture radius and redshift. The results from our simulations are compared with the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. When the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested: the standard definition of radius at a fixed overdensity with respect to critical density is compared with a definition based on the redshift dependent overdensity with respect to background density. We also present a detailed analysis of the scaling relations of the thermal SZ (Sunyaev Zel'dovich) Effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M-Y counterpart, more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter. The effects of the gas fraction on the Y-M scaling and the presence of a possible redshift dependence on the Y-M scaling relation are also explored.Comment: 22 pages, 25 figures, accepted for pubblication by MNRA
    • 

    corecore