234 research outputs found

    3D Ray Tracing for device-independent fingerprint-based positioning in WLANs

    Get PDF
    We study the use of 3D Ray Tracing (RT) to construct radiomaps for WLAN Received Signal Strength (RSS) fingerprint-based positioning, in conjunction with calibration techniques to make the overall process device-independent. RSS data collection might be a tedious and time-consuming process and also the measured radiomap accuracy and applicability is subject to potential changes in the wireless environment. Therefore, RT becomes a more attractive and efficient way to generate radiomaps. Moreover, traditional fingerprint-based methods lead to radiomaps which are restricted to the device used to generate the radiomap and fail to provide acceptable performance when different devices are considered. We address both challenges by exploiting 3D RT-generated radiomaps and using linear data transformation to match the characteristics of various devices. We evaluate the efficiency of this approach in terms of the time spent to create the radiomap, the amount of data required to calibrate the radiomap for different devices and the positioning error which is compared against the case of using dedicated radiomaps collected with each device

    Constraints on the dark sector from electroweak precision observables

    Full text link
    We revisit the constraints on the parameter space for dark photons arising from electroweak precision observables in light of the recent W boson mass anomaly reported by the CDF Collaboration. We also extend previous work by placing the first electroweak precision observable constraints on the coupling of dark photons to the fermionic dark matter sector.Comment: 14 pages, 2 figures, 4 table

    “Those songs were the ones that made me, nobody asked me this question before”: Music Elicitation with ex-gang involved men about their experiences of childhood domestic violence and abuse

    Get PDF
    This article describes the use of music and music videos as an elicitation tool within life-story narrative interviews. The study focused on the lives of men who had experienced domestic violence and abuse in childhood and become involved on road and/or with gangs. Music elicitation was used as participants were asked to select three music tracks that aided them telling their life stories, with particular reference to their experiences of domestic violence in childhood and their involvement on road and in gangs. The music tracks and in many cases the accompanying music videos were viewed in the interview space by both the researcher and participant together. In this case, music elicitation was found to be a very valuable element to the interviews and enhanced the experience for both the participant and researcher. Music elicitation operated in three main ways. Firstly, music often had been used as a personal coping mechanism, and this was recalled in the interview, acting as an anchor to the memory. Secondly, at points, both the music lyrics and their accompanying music videos were used as tools for communication by the participant, through them being used as metaphors, or as illustrations of the past. Lastly, the music was used by the participants as a narrative tool to structure and pace the interviews, giving them greater control over the interview space. This article shows promising results in using music as an elicitation tool for research with this participant group discussing sensitive issues

    Recommendation of RILEM TC237-SIB on cohesion test of recycled asphalt

    Get PDF
    This recommendation describes how to evaluate the presence of potentially active bitumen in recycled asphalt (RA) materials through the cohesion test. The experimental protocol is designed according to the research performed by the RILEM Technical Committee 237-SIB ‘‘Testing and characterization of sustainable innovative bituminous materials and systems’’ with the purpose, to develop a new, simple and fast method for the characterization of RA while limiting the need for conventional rheological tests. The guidelines in this recommendation focus on the testing procedure including specimen preparation, data analysis and provide information on the preparation of a tests report

    A dual-ISM-band antenna of small size using a spiral structure with parasitic element

    Get PDF
    This letter presents a compact, single-feed, dual-band antenna covering both the 433-MHz and 2.45-GHz Industrial Scientific and Medical (ISM) bands. The antenna has small dimensions of 51 ×28 mm². A square-spiral resonant element is printed on the top layer for the 433-MHz band. The remaining space within the spiral is used to introduce an additional parasitic monopole element on the bottom layer that is resonant at 2.45 GHz. Measured results show that the antenna has a 10-dB return-loss bandwidth of 2 MHz at 433 MHz and 132 MHz at 2.45 GHz, respectively. The antenna has omnidirectional radiation characteristics with a peak realized gain (measured) of -11.5 dBi at 433 MHz and +0.5 dBi at 2.45 GHz, respectively

    The Price of Defense

    Get PDF
    We consider a game on a graph G= ⟨ V, E⟩ with two confronting classes of randomized players: νattackers, who choose vertices and seek to minimize the probability of getting caught, and a single defender, who chooses edges and seeks to maximize the expected number of attackers it catches. In a Nash equilibrium, no player has an incentive to unilaterally deviate from her randomized strategy. The Price of Defense is the worst-case ratio, over all Nash equilibria, of ν over the expected utility of the defender at a Nash equilibrium. We orchestrate a strong interplay of arguments from Game Theory and Graph Theory to obtain both general and specific results in the considered setting: (1) Via a reduction to a Two-Players, Constant-Sum game, we observe that an arbitrary Nash equilibrium is computable in polynomial time. Further, we prove a general lower bound of |V|2 on the Price of Defense. We derive a characterization of graphs with a Nash equilibrium attaining this lower bound, which reveals a promising connection to Fractional Graph Theory; thereby, it implies an efficient recognition algorithm for such Defense-Optimal graphs. (2) We study some specific classes of Nash equilibria, both for their computational complexity and for their incurred Price of Defense. The classes are defined by imposing structure on the players’ randomized strategies: either graph-theoretic structure on the supports, or symmetry and uniformity structure on the probabilities. We develop novel graph-theoretic techniques to derive trade-offs between computational complexity and the Price of Defense for these classes. Some of the techniques touch upon classical milestones of Graph Theory; for example, we derive the first game-theoretic characterization of König-Egerváry graphs as graphs admitting a Matching Nash equilibrium

    Synthesis of Specimen Preparation and Curing Processes for Cold Recycled Asphalt Mixes

    Get PDF
    The process of cold recycling (CR) is becoming method of choice for pavement rehabilitation due to significantly added environmental and economic benefits. Understanding and standardization of specimen preparation and curing processes are critical to replicate field conditions in lab. This paper presents an extensive synthesis of various specimen preparation and curing processes for cold recycled asphalt mixes. Topics synthesized include RAP, emulsion/bitumen and aggregate preparation, mixing processes, pre- and post- compaction curing, compaction and mechanical testing. This paper was developed through efforts of cold recycling task group (TG6) of RILEM Technical Committee on Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems (TC-SIB)

    Design of a compact, fully-autonomous 433 MHz tunable antenna for wearable wireless sensor applications

    Get PDF
    The authors present the design of a tunable 433 MHz antenna that is tailored for wearable wireless sensor applications. This study first presents a detailed analysis of the measured impedance characteristics of a chosen antenna under test (AUT) in varying proximity to a human test subject. Instead of limiting the analysis to the head and hand only, this analysis measures the AUT impedance at varying distances from 11 different body positions. A novel antenna equivalent circuit model is then developed that enables both the free-space and total on-body AUT impedance variation to be rapidly computed using a circuit simulator instead of the requirement for computationally intensive finite-element methods for example. The design and characterisation of a tunable matching network that enables AUT impedance matching for 11 different positions on the human body is then outlined. Finally, a fully-autonomous 433 MHz tunable antenna is demonstrated. The antenna occupies a small printed circuit board area of 51 × 28 mm and is printed on standard FR-4 material with the tuner completely integrated into the antenna itself. Prototype measurements show an improvement of 3.9 dB in power delivery to the antenna for a load voltage standing wave ratio of 17:1, with a maximum matching loss of 0.84 dB and S 11 (−10 dB) ≥ 18 MHz for all load conditions

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
    corecore