41 research outputs found

    Rheumatoid arthritis synovium contains plasmacytoid dendritic cells

    Get PDF
    We have previously described enrichment of antigen-presenting HLA-DR(+ )nuclear RelB(+ )dendritic cells (DCs) in rheumatoid arthritis (RA) synovium. CD123(+)HLA-DR(+ )plasmacytoid DCs (pDCs) and their precursors have been identified in human peripheral blood (PB), lymphoid tissue, and some inflamed tissues. We hypothesized recruitment of pDCs into the inflamed RA synovial environment and their contribution as antigen-presenting cells (APCs) and inflammatory cells in RA. CD11c(+ )myeloid DCs and CD123(+ )pDCs were compared in normal and RA PB, synovial fluid (SF), and synovial tissue by flow cytometry, immunohistochemistry, and electron microscopy and were sorted for functional studies. Nuclear RelB(-)CD123(+ )DCs were located in perivascular regions of RA, in a similar frequency to nuclear RelB(+)CD123(- )DCs, but not normal synovial tissue sublining. Apart from higher expression of HLA-DR, the numbers and phenotypes of SF pDCs were similar to those of normal PB pDCs. While the APC function of PB pDCs was less efficient than that of PB myeloid DCs, RA SF pDCs efficiently activated resting allogeneic PB T cells, and high levels of IFN-γ, IL-10, and tumor necrosis factor α were produced in response to incubation of allogeneic T cells with either type of SF DCs. Thus, pDCs are recruited to RA synovial tissue and comprise an APC population distinct from the previously described nuclear RelB(+ )synovial DCs. pDCs may contribute significantly to the local inflammatory environment

    Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy

    Get PDF
    Intravital imaging of the superficial brain tissue in mice represents a powerful tool for the dissection of the cellular and molecular cues underlying inflammatory and infectious central nervous system (CNS) diseases. We present here a step-by-step protocol that will enable a non-specialist to set up a two-photon brain-imaging model. The protocol offers a two-part approach that is specifically optimized for imaging leukocytes but can be easily adapted to answer varied CNS-related biological questions. The protocol enables simultaneous visualization of fluorescently labeled immune cells, the pial microvasculature and extracellular structures such as collagen fibers at high spatial and temporal resolution. Intracranial structures are exposed through a cranial window, and physiologic conditions are maintained during extended imaging sessions via continuous superfusion of the brain surface with artificial cerebrospinal fluid (aCSF). Experiments typically require 1–2 h of preparation, which is followed by variable periods of immune cell tracking. Our methodology converges the experience of two laboratories over the past 10 years in diseased animal models such as cerebral ischemia, lupus, cerebral malaria, and toxoplasmosis. We exemplify the utility of this protocol by tracking leukocytes in transgenic mice in the pial vessels under steady-state conditions

    A Novel Endothelial L-Selectin Ligand Activity in Lymph Node Medulla That Is Regulated by α(1,3)-Fucosyltransferase-IV

    Get PDF
    Lymphocytes home to peripheral lymph nodes (PLNs) via high endothelial venules (HEVs) in the subcortex and incrementally larger collecting venules in the medulla. HEVs express ligands for L-selectin, which mediates lymphocyte rolling. L-selectin counterreceptors in HEVs are recognized by mAb MECA-79, a surrogate marker for molecularly heterogeneous glycans termed peripheral node addressin. By contrast, we find that medullary venules express L-selectin ligands not recognized by MECA-79. Both L-selectin ligands must be fucosylated by α(1,3)-fucosyltransferase (FucT)-IV or FucT-VII as rolling is absent in FucT-IV+VII−/− mice. Intravital microscopy experiments revealed that MECA-79–reactive ligands depend primarily on FucT-VII, whereas MECA-79–independent medullary L-selectin ligands are regulated by FucT-IV. Expression levels of both enzymes paralleled these anatomical distinctions. The relative mRNA level of FucT-IV was higher in medullary venules than in HEVs, whereas FucT-VII was most prominent in HEVs and weak in medullary venules. Thus, two distinct L-selectin ligands are segmentally confined to contiguous microvascular domains in PLNs. Although MECA-79–reactive species predominate in HEVs, medullary venules express another ligand that is spatially, antigenically, and biosynthetically unique. Physiologic relevance for this novel activity in medullary microvessels is suggested by the finding that L-selectin–dependent T cell homing to PLNs was partly insensitive to MECA-79 inhibition

    Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes

    Get PDF
    T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities

    Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites

    Get PDF
    Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens

    Real-Time Imaging Reveals the Dynamics of Leukocyte Behaviour during Experimental Cerebral Malaria Pathogenesis

    Get PDF
    During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6Chi monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8+ T lymphocytes. A critical number of CD8+ T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8+ T lymphocytes in regulating vascular pathology in this disease. © 2014 Pai et al

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Dendritic epidermal T-cell involvement in induction of CD8+ T cell-mediated immunity against an ultraviolet radiation-induced skin tumor

    No full text
    Murine epidermis contains 2 distinct cell populations which contribute to the skin immune system, Langerhans cells (LC), and dendritic epidermal T cells (DETC). LCs are important in the induction of immunity against a wide range of antigens; however, the function of DETC is unclear. To investigate the roles of these epidermal cells (EC) in protective antitumor immunity, an in vivo model of an ultraviolet radiation-induced fibrosarcoma, UV-13-1, was used. Mice were immunized with tumor antigen-pulsed EC followed 10 days later by an injection into the ear of 10 tumor cells, which did not lead to formation of a detectable tumor, but was intended to simulate the influence of a developing tumor on the ensuing immune response. The mice were then challenged with 2 x 10 viable tumor cells in each flank, sufficient to result in growth of a measurable tumor. Protective immunity was induced by DETC, and shown to be long-lasting, with tumors inoculated 160 days after immunization being effectively rejected. The effector cells responsible for protective immunity were CD8 T cells. Delayed-type hypersensitivity generated by tumor antigen-pulsed EC was dependent on LCs, with no involvement of DETCs. This response, in contrast to that of DETC, required prior culture of EC with GM-CSF, but failed to inhibit tumor growth or incidence. Thus DETC and LC can both activate antitumor immune responses, although only the DETC-dependent response results in protective immunity in the presence of a developing tumor
    corecore