466 research outputs found

    Ejection of a Low Mass Star in a Young Stellar System in Taurus

    Full text link
    We present the analysis of high angular resolution VLA radio observations, made at eleven epochs over the last 20 years, of the multiple system T Tauri. One of the sources (Sb) in the system has moved at moderate speed (5-10 km/s), on an apparently elliptical orbit during the first 15 years of observations, but after a close (< 2 AU) encounter with the source Sa, it appears to have accelerated westward to about 20 km/s in the last few years. Such a dramatic orbital change most probably indicates that Sb has just suffered an ejection - which would be the first such event ever detected. Whether Sb will ultimately stay on a highly elliptical bound orbit, or whether it will leave the system altogether will be known with about five more years of observations.Comment: 4 pages, accepter in ApJ Letter

    The Detection of Cold Dust in Cas A: Evidence for the Formation of Metallic Needles in the Ejecta

    Full text link
    Recently, Dunne et al. (2003) obtained 450 and 850 micron SCUBA images of CasA, and reported the detection of 2-4 M_sun of cold, 18K, dust in the remnant. Here we show that their interpretation of the observations faces serious difficulties. Their inferred dust mass is larger than the mass of refractory material in the ejecta of a 10 to 30 M_sun star. The cold dust model faces even more difficulties if the 170 micron observations of the remnant are included in the analysis, decreasing the cold dust temperature to ~ 8K, and increasing its mass to > 20 M_sun. We offer here a more plausible interpretation of their observation, in which the cold dust emission is generated by conducting needles with properties that are completely determined by the combined submillimeter and X-ray observations of the remnant. The needles consist of metallic whiskers with <1% of embedded impurities that may have condensed out of blobs of material that were expelled at high velocities from the inner metal-rich layers of the star in an asymmetric explosion. The needles are collisionally heated by the shocked gas to a temperature of 8K. Taking the destruction of needles into account, a dust mass of only 1E-4 to 1E-3M_sun is needed to account for the observed SCUBA emission. Aligned in the magnetic field, needles may give rise to observable polarized emission. The detection of submillimeter polarization will therefore offer definitive proof for a needle origin for the cold dust emission. Supernovae may still be proven to be important sources of interstellar dust, but the evidence is still inconclusive.Comment: 18 pages including 4 figures. Accepted for publication in the ApJ. Missing reference adde

    VLBA determination of the distance to nearby star-forming regions II. Hubble 4 and HDE 283572 in Taurus

    Full text link
    The non-thermal 3.6 cm radio continuum emission from the naked T Tauri stars Hubble 4 and HDE 283572 in Taurus has been observed with the Very Long Baseline Array (VLBA) at 6 epochs between September 2004 and December 2005 with a typical separation between successive observations of 3 months. Thanks to the remarkably accurate astrometry delivered by the VLBA, the trajectory described by both stars on the plane of the sky could be traced very precisely, and modeled as the superposition of their trigonometric parallax and uniform proper motion. The best fits yield distances to Hubble 4 and HDE 283572 of 132.8 +/- 0.5 and 128.5 +/- 0.6 pc, respectively. Combining these results with the other two existing VLBI distance determinations in Taurus, we estimate the mean distance to the Taurus association to be 137 pc with a dispersion (most probably reflecting the depth of the complex) of about 20 pc.Comment: 21 pages, 4 figues, accepted in ApJ (Dec 20, 2007 issue

    Detection of doubly-deuterated methanol in the solar-type protostar IRAS16293-2422

    Get PDF
    We report the first detection of doubly-deuterated methanol (CHD2OH), as well as firm detections of the two singly-deuterated isotopomers of methanol (CH2DOH and CH3OD), towards the solar-type protostar IRAS16293-2422. From the present multifrequency observations, we derive the following abundance ratios: [CHD2OH]/[CH3OH] = 0.2 +/- 0.1, [CH2DOH]/[CH3OH] = 0.9 +/- 0.3, [CH3OD]/[CH3OH] = 0.04 +/- 0.02. The total abundance of the deuterated forms of methanol is greater than that of its normal hydrogenated counterpart in the circumstellar material of IRAS16293-2422, a circumstance not previously encountered. Formaldehyde, which is thought to be the chemical precursor of methanol, possesses a much lower fraction of deuterated isotopomers (~ 20%) with respect to the main isotopic form in IRAS16293-2422. The observed fractionation of methanol and formaldehyde provides a severe challenge to both gas-phase and grain-surface models of deuteration. Two examples of the latter model are roughly in agreement with our observations of CHD2OH and CH2DOH if the accreting gas has a large (0.2-0.3) atomic D/H ratio. However, no gas-phase model predicts such a high atomic D/H ratio, and hence some key ingredient seems to be missing.Comment: 5 pages, 3 figure

    First detection of triply-deuterated methanol

    Get PDF
    We report the first detection of triply-deuterated methanol, with 12 observed transitions, towards the low-mass protostar IRAS 16293-2422, as well as multifrequency observations of 13CH3OH, used to derive the column density of the main isotopomer CH3OH. The derived fractionation ratio [CD3OH]/[CH3OH] averaged on a 10'' beam is 1.4%. Together with previous CH2DOH and CHD2OH observations, the present CD3OH observations are consistent with a formation of methanol on grain surfaces, if the atomic D/H ratio is 0.1 to 0.3 in the accreting gas. Such a high atomic ratio can be reached in the frame of gas-phase chemical models including all deuterated isotopomers of H3+.Comment: Accepted by A&

    Tidal foces as a regulator of star formation in Taurus

    Full text link
    Only a few molecular clouds in the Solar Neighborhood exhibit the formation of only low-mass stars. Traditionally, these clouds have been assumed to be supported against more vigorous collapse by magnetic fields. The existence of strong magnetic fields in molecular clouds, however, poses serious problems for the formation of stars and of the clouds themselves. In this {\em Letter}, we review the three-dimensional structure and kinematics of Taurus --the archetype of a region forming only low-mass stars-- as well as its orientation within the Milky way. We conclude that the particularly low star-formation efficiency in Taurus may naturally be explained by tidal forces from the Galaxy, with no need for magnetic regulation or stellar feedback.Comment: Minor changes. 5 pages. Accepted by MNRA

    The solar type protostar IRAS16293-2422: new constraints on the physical structure

    Get PDF
    Context: The low mass protostar IRAS16293-2422 is a prototype Class 0 source with respect to the studies of the chemical structure during the initial phases of life of Solar type stars. Aims: In order to derive an accurate chemical structure, a precise determination of the source physical structure is required. The scope of the present work is the derivation of the structure of IRAS16293-2422. Methods: We have re-analyzed all available continuum data (single dish and interferometric, from millimeter to MIR) to derive accurate density and dust temperature profiles. Using ISO observations of water, we have also reconstructed the gas temperature profile. Results: Our analysis shows that the envelope surrounding IRAS16293-2422 is well described by the Shu "inside-out" collapsing envelope model or a single power-law density profile with index equal to 1.8. In contrast to some previous studies, our analysis does not show evidence of a large (>/- 800 AU in diameter) cavity. Conclusions: Although IRAS16293-2422 is a multiple system composed by two or three objects, our reconstruction will be useful to derive the chemical structure of the large cold envelope surrounding these objects and the warm component, treated here as a single source, from single-dish observations of molecular emission

    VLBA determination of the distance to nearby star-forming regions I. The distance to T Tauri with 0.4% accuracy

    Full text link
    In this article, we present the results of a series of twelve 3.6-cm radio continuum observations of T Tau Sb, one of the companions of the famous young stellar object T Tauri. The data were collected roughly every two months between September 2003 and July 2005 with the Very Long Baseline Array (VLBA). Thanks to the remarkably accurate astrometry delivered by the VLBA, the absolute position of T Tau Sb could be measured with a precision typically better than about 100 micro-arcseconds at each of the twelve observed epochs. The trajectory of T Tau Sb on the plane of the sky could, therefore, be traced very precisely, and modeled as the superposition of the trigonometric parallax of the source and an accelerated proper motion. The best fit yields a distance to T Tau Sb of 147.6 +/- 0.6 pc. The observed positions of T Tau Sb are in good agreement with recent infrared measurements, but seem to favor a somewhat longer orbital period than that recently reported by Duchene et al. (2006) for the T Tau Sa/T Tau Sb system.Comment: 24 pages, 3 pages, AASTEX format, accepted for publication in Ap

    Monitoring the Large Proper Motions of Radio Sources in the Orion BN/KL Region

    Full text link
    We present absolute astrometry of four radio sources in the Becklin-Neugebauer/Kleinman-Low (BN/KL) region, derived from archival data (taken in 1991, 1995, and 2000) as well as from new observations (taken in 2006). All data consist of 3.6 cm continuum emission and were taken with the Very Large Array in its highest angular resolution A configuration. We confirm the large proper motions of the BN object, the radio source I (GMR I) and the radio counterpart of the infrared source n (Orion-n), with values from 15 to 26 km/s. The three sources are receding from a point between them from where they seem to have been ejected about 500 years ago, probably via the disintegration of a multiple stellar system. We present simulations of very compact stellar groups that provide a plausible dynamical scenario for the observations. The radio source Orion-n appeared as a double in the first three epochs, but as single in 2006. We discuss this morphological change. The fourth source in the region, GMR D, shows no statistically significant proper motions. We also present new, accurate relative astrometry between BN and radio source I that restrict possible dynamical scenarios for the region. During the 2006 observations, the radio source GMR A, located about 1' to the NW of the BN/KL region, exhibited an increase in its flux density of a factor of ~3.5 over a timescale of one hour. This rapid variability at cm wavelengths is similar to that previously found during a flare at millimeter wavelengths that took place in 2003.Comment: Accepted for publication in Ap
    corecore