1,346 research outputs found

    Angular offset distributions during fixation are, more often than not, multimodal

    Get PDF
    Typically, the position error of an eye-tracking device is measured as the distance of the eye-position from the target position in two-dimensional space (angular offset).  Accuracy is the mean angular offset.  The mean is a highly interpretable measure of central tendency if the underlying error distribution is unimodal and normal. However, in the context of an underlying multimodal distribution, the mean is less interpretable. We will present evidence that the majority of such distributions are multimodal.  Only 14.7% of fixation angular offset distributions  were  unimodal, and  of  these,  only  11.5%  were normally distributed.  (Of the entire dataset, 1.7% were unimodal and normal.)  This multimodality is true even if there is only a single, continuous tracking fixation segment per trial. We present several approaches to measure accuracy in the face of multimodality. We also address the role of fixation drift in partially explaining multimodality

    Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells

    Get PDF
    Background: Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. Results: We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1x10-6 trypsin units per cell. 1 L bioreactor cultivations showed that 4x106 cells/mL can be infected without a cell density effect achieving titers of 1x108 virions/mL after 24 h. Conclusions: Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required. © 2012 Lohr et al.; licensee BioMed Central Ltd. [accessed 2013 November 18th

    Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease

    Get PDF
    To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell–mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-γ produced by Th1 cells has a protective effect in this setting. Because of the interest in potential therapeutic approaches utilizing transfer of regulatory T cells and inhibition of the IL-2 pathway, we have explored the roles of these in the systemic disease. We demonstrate that the production of IL-17 and tissue infiltration by IL-17–producing cells occur and are even enhanced in the absence of IL-2. Regulatory T cells favor IL-17 production but prevent the disease when administered early in the course by suppressing expansion of T cells. Thus, the pathogenic or protective effects of cytokines and the therapeutic capacity of regulatory T cells are crucially dependent on the timing and the nature of the disease

    An efficient approach based on trust and reputation for secured selection of grid resources

    Full text link
    Security is a principal concern in offering an infrastructure for the formation of general-purpose computational grids. A number of grid implementations have been devised to deal with the security concerns by authenticating the users, hosts and their interactions in an appropriate fashion. Resource management systems that are sophisticated and secured are inevitable for the efficient and beneficial deployment of grid computing services. The chief factors that can be problematic in the secured selection of grid resources are the wide range of selection and the high degree of strangeness. Moreover, the lack of a higher degree of confidence relationship is likely to prevent efficient resource allocation and utilisation. In this paper, we present an efficient approach for the secured selection of grid resources, so as to achieve secure execution of the jobs. This approach utilises trust and reputation for securely selecting the grid resources. To start with, the self-protection capability and reputation weightage of all the entities are computed, and based on those values, the trust factor (TF) of all the entities are determined. The reputation weightage of an entity is the measure of both the user’s feedback and other entities’ feedback. Those entities with higher TF values are selected for the secured execution of jobs. To make the proposed approach more comprehensive, a novel method is employed for evaluating the user’s feedback on the basis of the existing feedbacks available regarding the entities. This approach is proved to be scalable for an increased number of user jobs and grid entities. The experimentation portrays that this approach offers desirable efficiency in the secured selection of grid resources

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor
    corecore