36 research outputs found

    Analyzing influencing factors to scale up agroforestry systems in Colombia: A comparative ex-ante assessment of cacao farming and cattle ranching in two regions

    Get PDF
    Agroforestry systems (AFS) are proved to enhance sustainable land management. Thus, there is increasing demand for effective ways to scale up AFS so that more people can benefit. Consequently, this study assesses the scaling-up potential of agroforestry systems (AFS) using cacao farming and cattle ranching in Caquetá and Cesar, Colombia, as examples. An ex-ante assessment using the ScalA tool is conducted through interviews with AFS experts from institutions promoting AFS. Using a comparative approach, results reveal that AFS have different scaling-up potential depending on the type of farming system and location characteristics. In our case, it is slightly higher for cacao farming than for cattle ranching in both regions and it is higher in Caquetá than in Cesar for both systems. Factors hindering the scaling-up potential for both regions are economic conditions at the local and regional levels since there is a lack of stable and differentiated markets to absorb AFS products. In contrast, the scaling-up potential in both regions is increased by the factors related to the capacity of the organizations that promote AFS and the attitudes of local communities toward them. The study generates information about factors that may hinder or foster AFS scaling-up, including not just the capacities and mechanisms to promote them but also the enabling conditions. This contributes to prioritizing AFS interventions and better allocating their resources to increase their chances of successful scaling-up

    Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting

    Get PDF
    Infective endocarditis (IE) is a life-threatening disease that is associated with high morbidity and mortality. Its long-term prognosis strongly depends on a timely and optimized antibiotic treatment. Therefore, identification of the causative pathogen is crucial and currently based on blood cultures followed by characterization and susceptibility testing of the isolate. However, antibiotic treatment starting prior to blood sampling or IE caused by fastidious or intracellular microorganisms may cause negative culture results. Here we investigate the additional diagnostic value of broad-range PCR in combination with direct sequencing on resected heart tissue or swabs in patients with tissue or swab culture-negative IE in a routine clinical setting. Sensitivity, specificity, and positive and negative predictive values of broad-range PCR from diagnostic material in our patients were 33.3%, 76.9%, 90.9%, and 14.3%, respectively. We identified a total of 20 patients (21.5%) with tissue or culture-negative IE who profited by the additional application of broad-range PCR. We conclude that broad-range PCR on resected heart tissue or swabs is an important complementary diagnostic approach. It should be seen as an indispensable new tool for both the therapeutic and diagnostic management of culture-negative IE and we thus propose its possible inclusion in Duke’s diagnostic classification scheme

    Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy

    Get PDF
    Peptides presented at the cell surface reflect the protein content of the cell; those on HLA class I molecules comprise the critical peptidome elements interacting with CD8 T lymphocytes. We hypothesize that peptidomes from ex vivo tumour samples encompass immunogenic tumour antigens. Here, we uncover >6000 HLA-bound peptides from HLA-A*02+ glioblastoma, of which over 3000 were restricted by HLA-A*02. We prioritized in-depth investigation of 10 glioblastoma-associated antigens based on high expression in tumours, very low or absent expression in healthy tissues, implication in gliomagenesis and immunogenicity. Patients with glioblastoma showed no T cell tolerance to these peptides. Moreover, we demonstrated specific lysis of tumour cells by patients' CD8+ T cells in vitro. In vivo, glioblastoma-specific CD8+ T cells were present at the tumour site. Overall, our data show the physiological relevance of the peptidome approach and provide a critical advance for designing a rational glioblastoma immunotherapy. The peptides identified in our study are currently being tested as a multipeptide vaccine (IMA950) in patients with glioblastom

    Molecular Tracing to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012–2016

    Get PDF
    We investigated 543 Listeria monocytogenes isolates from food having a temporal and spatial distribution compatible with that of the invasive listeriosis outbreak occurring 2012–2016 in southern Germany. Using forensic microbiology, we identified several products from 1 manufacturer contaminated with the outbreak genotype. Continuous molecular surveillance of food isolates could prevent such outbreaks

    [PPS_1128_20190320a]

    Get PDF
    Glas wird mit dem Ziel, die Festigkeits- und Sicherheitseigenschaften zu verbessern, thermisch vorgespannt und zu Verbundglas laminiert. Nur so ist es möglich, Bauteile wie Treppen, Träger und Stützen transparent zu gestalten oder sogar Ganzglaskonstruktionen auszuführen. Gleichzeitig werden an diese Glasbauteile höchste ästhetische Ansprüche gestellt. Diese Ansprüche können aktuell nicht immer erfüllt werden. Aus dem Veredelungsprozess von Verbundglas resultiert ein Kantenversatz zwischen den Einzelgläsern, der die optische Qualität der frei sichtbaren Kanten erheblich beeinträchtigt. Darüber hinaus führt dieser Kantenversatz bei Lasteinleitung über die Kante zu einer ungleichmäßigen und damit ungünstigen Lastverteilung auf die Einzelgläser. Das Nachschleifen der Verbundglaskante ermöglicht, die optische Beeinträchtigung zu beheben und eine ebene Kantenoberfläche zu schaffen. Bei thermisch vorgespanntem Glas verursacht das Nachschleifen allerdings einen mechanischen Eingriff in den thermischen Vorspannungszustand, der sinkende Festigkeiten zur Folge haben kann. Dies stellt ein erhebliches Risiko dar, da das Bauteil unplanmäßig versagen könnte. Eine wissenschaftlich belegte Beurteilung des Versagensrisikos ist derzeit nicht verfügbar. Die europäische Normung schließt das Nachschleifen deshalb vollständig aus. Die vorliegende Arbeit trägt dazu bei, diese Lücke zu schließen und verfolgt das Ziel, den Einfluss des Nachschleifens auf thermisch vorgespannte Gläser zu charakterisieren. Eine Auseinandersetzung mit der Herstellung und Veredelung von Flachglas führt zur Ausgangssituation für das Nachschleifen und den zu berücksichtigenden Einflussgrößen. Das daraus abgeleitete experimentelle Versuchsprogramm beinhaltet die zweistufige Untersuchung von 240 Probekörpern aus Einscheiben-Sicherheitsglas und Teilvorgespanntem Glas mit variierender Glasdicke. Diese wurden in unterschiedlichen Nachschleiftiefen bearbeitet. Zunächst erfolgt die umfangreiche Analyse des thermischen Vorspannungszustands mit Hilfe von spannungsoptischen Messmethoden. Der zweite Schritt beinhaltet Bruchversuche zur Bestimmung der Festigkeit sowie begleitende mikroskopische Untersuchungen des bruchverursachenden Defektes. Die Analyse der Korrelation zwischen den Ergebnissen der thermischen Vorspannung und dem Bruchverhalten erlaubt die Beschreibung des Einflusses des Nachschleifens auf thermisch vorgespanntes Glas. Daraus geht hervor, dass die thermische Vorspannung an der Kante mit steigender Nachschleiftiefe sinkt. Mit den Vorspannungswerten sinkt auch die Beanspruchbarkeit der Gläser. Die verbleibenden charakteristischen Festigkeiten unterschreiten jedoch nicht zwangsläufig die normativ geforderten Grenzwerte. In Abhängigkeit von Glasart und Glasdicke ist das Nachschleifen in definierten Grenzen möglich, ohne ein unplanmäßiges Versagensrisiko hervorzurufen. Aus den Ergebnissen der Probekörper dieser Arbeit geht hervor, dass Teilvorgespanntes Glas, in Abhängigkeit von der Glasdicke, maximal 3 mm nachgeschliffen werden konnte, ohne die in den Produktnormen geforderten Festigkeiten zu unterschreiten. Im Gegensatz dazu lag die Grenze bei Einscheiben-Sicherheitsglas schon bei 1 mm Nachschleiftiefe. Auf dieser Grundlage sowie der Zusammenführung aller Ergebnisse dieser Arbeit erfolgt die Herleitung von konstruktiven sowie verfahrenstechnischen Empfehlungen, die sich positiv auf die nach dem Nachschleifen verbleibende Festigkeit auswirken. Für die Ingenieurpraxis wird zudem ein Nachweiskonzept für thermisch vorgespannte Gläser mit nachgeschliffenen Kanten erarbeitet. Die Erkenntnisse dieser Arbeit zeigen, dass das Potential des Nachschleifens als zusätzlicher Veredelungsschritt von thermisch vorgespannten Verbundgläsern genutzt werden kann. Sie belegen, auf Basis umfangreicher wissenschaftlicher Untersuchungen, dass kein unplanmäßiges Versagensrisiko durch das Nachschleifen entsteht, wenn bestimmte Grenzwerte eingehalten werden. Die aus dem Umfang der Versuche dieser Arbeit abgeleiteten Empfehlungen und das entwickelte Nachweiskonzept eröffnen einen Weg für den zukünftigen Einsatz des Nachschleifens von thermisch vorgespannten Gläsern, um Glasbauteile mit ebenen und optisch hervorragenden Verbundglaskanten schaffen zu können.:1 Einleitung 2 Glasherstellung und -veredelung 3 Thermische Vorspannung 4 Festigkeit und Bruchverhalten 5 Gesamtergebnisse und Empfehlungen 6 Zusammenfassung und Ausblick 7 LiteraturTo enhance the strength and safety of glass members, glass is often both thermally toughened and laminated. This enables the realisation of transparent components such as staircases, beams and columns, or even all-glass constructions. Additionally, these glass constructions must meet the demand on high aesthetic quality. Currently, it is not always possible to reach these demand. Processing laminated glass can cause an edge offset between the individual glass panes, which significantly affects the optical quality of visible glass edges. Moreover, in the case of glass components with load introduction into the laminated glass edge, the offset leads to an uneven and adverse load splitting on the individual glass panes. Regrinding laminated glass edges provides the opportunity to remove the optical deficit and establish smooth edges. However, regrinding of thermally toughened glass causes a mechanical intervention into the residual stress state that could lead to a decrease in strength. This poses a considerable risk, as the glass component could fail unexpectedly. Despite this significant risk, there are currently no scientifically established risk assessment methods for the influence of regrinding. Therefore, the European standards exclude the regrinding of thermally toughened glass. Accordingly, this thesis aims to address this deficiency by characterising the effect of regrinding on thermally toughened glass. In this thesis, extensive analysis of flat glass production and processing of glass lead to the influencing variables, which has to be considered in the examination of regrinding. The derived two-stage testing programme includes 240 specimens made of fully tempered glass and heat-strengthened glass of varying thicknesses. Specimens underwent regrinding to varying depths. Firstly, the analysis of the residual stress state is carried out with stress-optical measuring methods. Afterwards, fracture tests are executed to determine the strength. Accompanying studies include microscopic examinations of the defects in the glass causing the fracture. Measured residual stress state and fracture stress are correlated in order to characterise the influence of the regrinding process on thermally toughened glass. The study demonstrated that increasing regrinding depths lead to a decrease in the residual stress at the edge. As a result, the resultant strength also decreases. However, the remaining characteristic strengths are not necessarily below the normatively regulated characteristic strengths. Depending on the glass type and thickness, regrinding is possible within defined limits without causing an unexpected risk of failure. The results of the tested specimens of this thesis indicate that, depending on the glass thickness, regrinding of heat-strengthened glass is possible up to a maximum of 3 mm regrinding depth without a reduction in strength below standardised limits. In contrast, the maximum limit of regrinding fully tempered glass was 1 mm. On this basis, as well as, the combination of all experimental results of this thesis, constructive and procedural recommendations which positively affect the remaining strength after regrinding are derived. In addition, a verification concept for thermally toughened glass with reground edges is developed. Finally, the results of this thesis show that the regrinding process can be implemented as an additional finishing step for thermally toughened laminated glass. Based on comprehensive scientific studies, the outcome verifies that regrinding up to defined limits does not result in risk of premature failure. The derived recommendations and developed verification concept, which results from the examinations of this thesis, establish opportunities for future use of reground laminated thermally toughened glass to create glass components with smooth edges of the highest optical quality.:1 Einleitung 2 Glasherstellung und -veredelung 3 Thermische Vorspannung 4 Festigkeit und Bruchverhalten 5 Gesamtergebnisse und Empfehlungen 6 Zusammenfassung und Ausblick 7 Literatu

    Analyse des Requirements Engineering eines KIS-Herstellers

    No full text
    Requirements Engineering (RE) umfasst sämtliche systematische Schritte zur Entwicklung eines Systems, um die Bedürfnisse der Nutzer und Vorgaben, die an dieses gestellt werden, zu erfüllen. Das RE eines ausgewählten Herstellers für klinische Informationssysteme (KIS) wurde untersucht und es stellt sich als intransparent als auch teilweise unzureichend dar. Das Ausmaß des Einsatzes von systematischen Vorgehensweisen und Methoden zum RE wurden beim ausgewählten KIS-Hersteller analysiert. Die Analyse zeigt, dass RE weit verbreitet ist, aber differenziert betrieben wird. Das Ziel dieser Arbeit ist es, den Stand der Technik des RE für die KIS Entwicklung zu ermitteln. Es werden wichtige Faktoren des RE für die Entwicklung von KIS beschrieben. Die Ergebnisse dieser Arbeit werden als erster Schritt für die Optimierung des RE des ausgewählten KIS-Herstellers dienen

    Thermisch vorgespanntes Glas mit nachgeschliffenen Kanten

    No full text
    Glas wird mit dem Ziel, die Festigkeits- und Sicherheitseigenschaften zu verbessern, thermisch vorgespannt und zu Verbundglas laminiert. Nur so ist es möglich, Bauteile wie Treppen, Träger und Stützen transparent zu gestalten oder sogar Ganzglaskonstruktionen auszuführen. Gleichzeitig werden an diese Glasbauteile höchste ästhetische Ansprüche gestellt. Diese Ansprüche können aktuell nicht immer erfüllt werden. Aus dem Veredelungsprozess von Verbundglas resultiert ein Kantenversatz zwischen den Einzelgläsern, der die optische Qualität der frei sichtbaren Kanten erheblich beeinträchtigt. Darüber hinaus führt dieser Kantenversatz bei Lasteinleitung über die Kante zu einer ungleichmäßigen und damit ungünstigen Lastverteilung auf die Einzelgläser. Das Nachschleifen der Verbundglaskante ermöglicht, die optische Beeinträchtigung zu beheben und eine ebene Kantenoberfläche zu schaffen. Bei thermisch vorgespanntem Glas verursacht das Nachschleifen allerdings einen mechanischen Eingriff in den thermischen Vorspannungszustand, der sinkende Festigkeiten zur Folge haben kann. Dies stellt ein erhebliches Risiko dar, da das Bauteil unplanmäßig versagen könnte. Eine wissenschaftlich belegte Beurteilung des Versagensrisikos ist derzeit nicht verfügbar. Die europäische Normung schließt das Nachschleifen deshalb vollständig aus. Die vorliegende Arbeit trägt dazu bei, diese Lücke zu schließen und verfolgt das Ziel, den Einfluss des Nachschleifens auf thermisch vorgespannte Gläser zu charakterisieren. Eine Auseinandersetzung mit der Herstellung und Veredelung von Flachglas führt zur Ausgangssituation für das Nachschleifen und den zu berücksichtigenden Einflussgrößen. Das daraus abgeleitete experimentelle Versuchsprogramm beinhaltet die zweistufige Untersuchung von 240 Probekörpern aus Einscheiben-Sicherheitsglas und Teilvorgespanntem Glas mit variierender Glasdicke. Diese wurden in unterschiedlichen Nachschleiftiefen bearbeitet. Zunächst erfolgt die umfangreiche Analyse des thermischen Vorspannungszustands mit Hilfe von spannungsoptischen Messmethoden. Der zweite Schritt beinhaltet Bruchversuche zur Bestimmung der Festigkeit sowie begleitende mikroskopische Untersuchungen des bruchverursachenden Defektes. Die Analyse der Korrelation zwischen den Ergebnissen der thermischen Vorspannung und dem Bruchverhalten erlaubt die Beschreibung des Einflusses des Nachschleifens auf thermisch vorgespanntes Glas. Daraus geht hervor, dass die thermische Vorspannung an der Kante mit steigender Nachschleiftiefe sinkt. Mit den Vorspannungswerten sinkt auch die Beanspruchbarkeit der Gläser. Die verbleibenden charakteristischen Festigkeiten unterschreiten jedoch nicht zwangsläufig die normativ geforderten Grenzwerte. In Abhängigkeit von Glasart und Glasdicke ist das Nachschleifen in definierten Grenzen möglich, ohne ein unplanmäßiges Versagensrisiko hervorzurufen. Aus den Ergebnissen der Probekörper dieser Arbeit geht hervor, dass Teilvorgespanntes Glas, in Abhängigkeit von der Glasdicke, maximal 3 mm nachgeschliffen werden konnte, ohne die in den Produktnormen geforderten Festigkeiten zu unterschreiten. Im Gegensatz dazu lag die Grenze bei Einscheiben-Sicherheitsglas schon bei 1 mm Nachschleiftiefe. Auf dieser Grundlage sowie der Zusammenführung aller Ergebnisse dieser Arbeit erfolgt die Herleitung von konstruktiven sowie verfahrenstechnischen Empfehlungen, die sich positiv auf die nach dem Nachschleifen verbleibende Festigkeit auswirken. Für die Ingenieurpraxis wird zudem ein Nachweiskonzept für thermisch vorgespannte Gläser mit nachgeschliffenen Kanten erarbeitet. Die Erkenntnisse dieser Arbeit zeigen, dass das Potential des Nachschleifens als zusätzlicher Veredelungsschritt von thermisch vorgespannten Verbundgläsern genutzt werden kann. Sie belegen, auf Basis umfangreicher wissenschaftlicher Untersuchungen, dass kein unplanmäßiges Versagensrisiko durch das Nachschleifen entsteht, wenn bestimmte Grenzwerte eingehalten werden. Die aus dem Umfang der Versuche dieser Arbeit abgeleiteten Empfehlungen und das entwickelte Nachweiskonzept eröffnen einen Weg für den zukünftigen Einsatz des Nachschleifens von thermisch vorgespannten Gläsern, um Glasbauteile mit ebenen und optisch hervorragenden Verbundglaskanten schaffen zu können.:1 Einleitung 2 Glasherstellung und -veredelung 3 Thermische Vorspannung 4 Festigkeit und Bruchverhalten 5 Gesamtergebnisse und Empfehlungen 6 Zusammenfassung und Ausblick 7 LiteraturTo enhance the strength and safety of glass members, glass is often both thermally toughened and laminated. This enables the realisation of transparent components such as staircases, beams and columns, or even all-glass constructions. Additionally, these glass constructions must meet the demand on high aesthetic quality. Currently, it is not always possible to reach these demand. Processing laminated glass can cause an edge offset between the individual glass panes, which significantly affects the optical quality of visible glass edges. Moreover, in the case of glass components with load introduction into the laminated glass edge, the offset leads to an uneven and adverse load splitting on the individual glass panes. Regrinding laminated glass edges provides the opportunity to remove the optical deficit and establish smooth edges. However, regrinding of thermally toughened glass causes a mechanical intervention into the residual stress state that could lead to a decrease in strength. This poses a considerable risk, as the glass component could fail unexpectedly. Despite this significant risk, there are currently no scientifically established risk assessment methods for the influence of regrinding. Therefore, the European standards exclude the regrinding of thermally toughened glass. Accordingly, this thesis aims to address this deficiency by characterising the effect of regrinding on thermally toughened glass. In this thesis, extensive analysis of flat glass production and processing of glass lead to the influencing variables, which has to be considered in the examination of regrinding. The derived two-stage testing programme includes 240 specimens made of fully tempered glass and heat-strengthened glass of varying thicknesses. Specimens underwent regrinding to varying depths. Firstly, the analysis of the residual stress state is carried out with stress-optical measuring methods. Afterwards, fracture tests are executed to determine the strength. Accompanying studies include microscopic examinations of the defects in the glass causing the fracture. Measured residual stress state and fracture stress are correlated in order to characterise the influence of the regrinding process on thermally toughened glass. The study demonstrated that increasing regrinding depths lead to a decrease in the residual stress at the edge. As a result, the resultant strength also decreases. However, the remaining characteristic strengths are not necessarily below the normatively regulated characteristic strengths. Depending on the glass type and thickness, regrinding is possible within defined limits without causing an unexpected risk of failure. The results of the tested specimens of this thesis indicate that, depending on the glass thickness, regrinding of heat-strengthened glass is possible up to a maximum of 3 mm regrinding depth without a reduction in strength below standardised limits. In contrast, the maximum limit of regrinding fully tempered glass was 1 mm. On this basis, as well as, the combination of all experimental results of this thesis, constructive and procedural recommendations which positively affect the remaining strength after regrinding are derived. In addition, a verification concept for thermally toughened glass with reground edges is developed. Finally, the results of this thesis show that the regrinding process can be implemented as an additional finishing step for thermally toughened laminated glass. Based on comprehensive scientific studies, the outcome verifies that regrinding up to defined limits does not result in risk of premature failure. The derived recommendations and developed verification concept, which results from the examinations of this thesis, establish opportunities for future use of reground laminated thermally toughened glass to create glass components with smooth edges of the highest optical quality.:1 Einleitung 2 Glasherstellung und -veredelung 3 Thermische Vorspannung 4 Festigkeit und Bruchverhalten 5 Gesamtergebnisse und Empfehlungen 6 Zusammenfassung und Ausblick 7 Literatu

    Abstract of: Residual stress distribution in tempered glass with reground edges

    No full text
    Many glass applications require laminated glass to achieve a safe load-bearing behaviour. Beside the structural aspect, glass elements have to meet high aesthetic demands. Laminated glasses often feature an offset between the individual glass panes resulting from the lamination process. With regards to visible or exposed edges, this displacement reduces the aesthetic quality of the glass component. The regrinding of the edge after lamination equalises the offset and thus creates a smooth surface. However, regrinding tempered glass leads to a reduction of the surface compression zone at the edge and may decrease the load-bearing capacity. A research project focuses on the detailed evaluation of the effect of regrinding tempered glass. To attain a precise understanding, three different aspects have to be examined: first the maximum required grinding depth resulting from the edge offset, second the defects on the surface of the edge and third the residual stress distribution. The third part was examined by means of stress measurements at the edge and the surface of different specimens. Glass beams made of fully tempered glass and heat strengthened glass with three different thicknesses (6, 8 and 10 mm) were ground after the tempering process. The regrinding depth was 1, 2 and 3 mm. One group of specimens remain untreated as a reference. The depth of the compression zone and the magnitude of the surface stress at the edge were measured with the help of photoelastic measurements. The experimental approach and the results are the content of this paper. It enables a statement about transformations of the residual stress state at the edge owing to regrinding tempered glass

    Comparison of the Residual Stresses at the Edge and Surface of Thermally Toughened Glass

    No full text
    The strength of thermally toughened glass is regulated in EN 12150-1 for fully tempered glass (FTG) and EN 1863-1 for heat-strengthened glass (HSG). The manufacturer has to prove the strength by four-point bending tests based on EN 1288-3. A measurement of the residual stresses of thermally toughened glass is not demanded. Consequently, the determination of the strength is containing the amount of residual stresses. As residual stress is depending on the manufacturing process, the amount and distribution can change within one glass pane and between different glass panes. A research project determined the residual stresses at the surfaces and the edges of HSG and FTG with varying glass thicknesses using photoelastic measurements. Thereby, FTG showed lower values of the residual stresses at the edge compared to the surface. Looking at HSG, the results of the residual stresses at the edge and surface were nearly the same. To analyse the edge strength, four-point bending tests were conducted. Thereby, the load was introduced into the strong axis of the specimens to implement constant tensile stresses along the glass edge. The comparison of the edge strengths showed that the edge strength of FTG is in the same range than HSG. Therefore, the lower residual stress at the edge of FTG reflects in significantly lower edge strengths. The paper includes a detailed presentation of the photoelastic measurements at the edge and the surface as well as the determined residual stresses of more than 80 specimens. In addition, the conducted four-point bending tests are described and the obtained edge strengths are correlated to the measured residual stresses. Based on that, the paper contains a discussion of the standardisations, the process of thermally prestressing and the consequences for the final glass strengths
    corecore