1,299 research outputs found

    The electron identification performance of ALICE TRD

    Get PDF

    Inner approximated reachability analysis

    Get PDF
    International audienceComputing a tight inner approximation of the range of a function over some set is notoriously di cult, way beyond obtaining outer approximations. We propose here a new method to compute a tight inner approximation of the set of reachable states of non-linear dynamical systems on a bounded time interval. This approach involves a ne forms and Kaucher arithmetic, plus a number of extra ingredients from set-based methods. An implementation of the method is discussed, and illustrated on representative numerical schemes, discrete-time and continuous-time dynamical systems

    Simulation of the magnetosphere with a new three dimensional MHD code and adaptive mesh refinement: Preliminary results

    Get PDF
    We present the first results from a new unstructured mesh three dimensional finite element MHD code which uses dynamic solution-adaptive mesh refinement in a manner similar to our two dimensional finite element MHD code /31/. The problem being considered here is the interaction of the solar wind with the earth's magnetosphere, using a three-dimensional Cartesian approximation. Our results strongly indicate that such adaptive mesh techniques have the ability to resolve structures in the three dimensional MHD flow field that would otherwise be possible only with orders of magnitude greater cost and that are most likely beyond the capability of present supercomputers

    A High-resolution Adaptive Moving Mesh Hydrodynamic Algorithm

    Full text link
    An algorithm for simulating self-gravitating cosmological astrophysical fluids is presented. The advantages include a large dynamic range, parallelizability, high resolution per grid element and fast execution speed. The code is based on a finite volume flux conservative Total-Variation-Diminishing (TVD) scheme for the shock capturing hydro, and an iterative multigrid solver for the gravity. The grid is a time dependent field, whose motion is described by a generalized potential flow. Approximately constant mass per cell can be obtained, providing all the advantages of a Lagrangian scheme. The grid deformation combined with appropriate limiting and smoothing schemes guarantees a regular and well behaved grid geometry, where nearest neighbor relationships remain constant. The full hydrodynamic fluid equations are implemented in the curvilinear moving grid, allowing for arbitrary fluid flow relative to the grid geometry. This combination retains all the advantages of the grid based schemes including high speed per fluid element and a rapid gravity solver. The current implementation is described, and empirical simulation results are presented. Accurate execution speed calculations are given in terms of floating point operations per time step per grid cell. This code is freely available to the community.Comment: 53 pages including 14 figures, submitted to ApJ

    Quantitative Validation of PEDFLOW for Description of Unidirectional Pedestrian Dynamics

    Get PDF
    The results of a systematic quantitative validation of PEDFLOW based on the experimental data from FZJ are presented. Uni- directional flow experiments, totaling 28 different combinations with varying entry, corridor and exit widths, were considered. The condition imposed on PEDFLOW was that all the cases should be run with the same input parameters. The exit times and fundamental diagrams for the measuring region were evaluated and compared. This validation process led to modifications and enhancements of the model underlying PEDFLOW. The preliminary conclusions indicate that the results agree well for densities smaller than 3 m-2 and a good agreement is observed even at high densities for the corridors with bcor = 2.4 m, and bcor = 3.0 m. For densities between 1 and 2 m-2 the specific flow and velocities are underpredicted by PEDFLOW. &nbsp

    On the coupling of CFD and CSD methodologies for modeling blast-structure interactions

    Get PDF
    This paper describes applications of a coupled Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) methodology to the simulation of blast waves generated by bare explosive charges in a test facility with rigid and deformable walls. The coupled algorithm combines FEFLO98 (CFD) and MARS3D (CSD) via an embedded approach, where the CSD objects float through the CFD domain. This combination enables an easier and more accurate prediction of structural deformation, cracking and failure under blast loading. Several experiments were conducted to characterize blast load and structural response as a function of charge size, weapon ignition point (nose or tail) and orientation (horizontal or vertical). The numerical simulations helped in understanding the experimental results, some of which were not intuitively understood. Good agreement between the experimental results and the numerical predictions were demonstrated for pressure data, blast loading and the corresponding structural response. Keywords: blast-structure interaction, coupled CFD and CSD, blast wave evolution, structural response to blast loading

    Use of quercetin in animal feed : effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken

    Get PDF
    Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.Peer reviewedFinal Published versio

    Ultrafast Coherent Generation of Hot Electrons Studied via Band-to-Acceptor Luminescence in GaAs

    Get PDF
    The distribution of hot electrons excited with femtosecond laser pulses is studied via spectrally resolved band-to-acceptor luminescence. Our data demonstrate for the first time that the coherent coupling between the laser pulse and the interband polarization strongly influences the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena, are in excellent agreement with the experimental data

    Clinical application of image‐based CFD for cerebral aneurysms

    Get PDF
    During the last decade, the convergence of medical imaging and computational modeling technologies has enabled tremendous progress in the development and application of image‐based computational fluid dynamics modeling of patient‐specific blood flows. These techniques have been used for studying the basic mechanisms involved in the initiation and progression of vascular diseases, for studying possible ways to improve the diagnosis and evaluation of patients by incorporating hemodynamics information to the anatomical data typically available, and for the development of computational tools that can be used to improve surgical and endovascular treatment planning. However, before these technologies can have a significant impact on the routine clinical practice, it is still necessary to demonstrate the connection between the extra information provided by the models and the natural progression of vascular diseases and the outcome of interventions. This paper summarizes some of our contributions in this direction, focusing in particular on cerebral aneurysms
    corecore