150 research outputs found
WannaCry Ransomware: Analysis of Infection, Persistence, Recovery Prevention and Propagation Mechanisms, Journal of Telecommunications and Information Technology, 2019, nr 1
In recent years, we have been experiencing fast proliferation of different types of ransomware targeting home users, companies and even critical telecommunications infrastructure elements. Modern day ransomware relies on sophisticated infection, persistence and recovery prevention mechanisms. Some recent examples that received significant attention include WannaCry, Petya and BadRabbit. To design and develop appropriate defense mechanisms, it is important to understand the characteristics and the behavior of different types of ransomware. Dynamic analysis techniques are typically used to achieve that purpose, where the malicious binaries are executed in a controlled environment and are then observed. In this work, the dynamic analysis results focusing on the infamous WannaCry ransomware are presented. In particular, WannaCry is examined, during its execution in a purpose-built virtual lab environment, in order to analyze its infection, persistence, recovery prevention and propagation mechanisms. The results obtained may be used for developing appropriate detection and defense solutions for WannaCry and other ransomware families that exhibit similar behavior
Call Blocking Probabilities of Multirate Elastic and Adaptive Traffic under the Threshold and Bandwidth Reservation Policies, Journal of Telecommunications and Information Technology, 2016, nr 1
This paper proposes multirate teletraffic loss models of a link that accommodates different service-classes of elastic and adaptive calls. Calls follow a Poisson process, can tolerate bandwidth compression and have an exponentially distributed service time. When bandwidth compression occurs, the service time of new and in-service elastic calls increases. Adaptive calls do not alter their service time. All calls compete for the available link bandwidth under the combination of the Threshold (TH) and the Bandwidth Reservation (BR) policies. The TH policy can provide different QoS among service-classes by limiting the number of calls of a service-class up to a predefined threshold, which can be different for each service-class. The BR policy reserves part of the available link bandwidth to benefit calls of high bandwidth requirements. The analysis of the proposed models is based on approximate but recursive formulas, whereby authors determine call blocking probabilities and link utilization. The accuracy of the proposed formulas is verified through simulation and found to be very satisfactory
QoS Equalization in a W-CDMA Cell Supporting Calls of Innite or Finite Sources with Interference Cancelation, Journal of Telecommunications and Information Technology, 2014, nr 3
In this paper, a multirate loss model for the calculation of time and call congestion probabilities in a Wideband Code Division Multiple Access (W-CDMA) cell is considered. It utilizes the Bandwidth Reservation (BR) policy and supports calls generated by an innite or nite number of users. The BR policy achieves QoS equalization by equalizing congestion probabilities among calls of dierent service-classes. In the proposed models a multiple access interference is considered, and the notion of local blocking, user's activity and interference cancelation. Although the analysis of the proposed models reveals that the steady state probabilities do not have a product form solution, the authors show that the calculation of time and call congestion probabilities can be based on approximate but recursive formulas, whose accuracy is veried through simulation and found to be quite satisfactory
Functional Brain Imaging in the Clinical Assessment of Consciousness
Recent findings suggest that functional brain imaging might be used to identify consciousness in patients diagnosed with persistent vegetative state and minimally conscious state. Michael Rafii and James Brewer discuss the potential for fMRI's wider implementation in clinical practice, and associated caveats
Osteoblastic lesion screening with an advanced post-processing package enabling in-plane rib reading in CT-images
Background
To evaluate screening and diagnostic accuracy for the detection of osteoblastic rib lesions using an advanced post-processing package enabling in-plane rib reading in CT-images.
Methods
We retrospectively assessed the CT-data of 60 consecutive prostate cancer patients by applying dedicated software enabling in-plane rib reading. Reading the conventional multiplanar reconstructions was considered to be the reference standard. To simulate clinical practice, the reader was given 10 s to screen for sclerotic rib lesions in each patient applying both approaches. Afterwards, every rib was evaluated individually with both approaches without a time limit. Sensitivities, specificities, positive/negative predictive values and the time needed for detection were calculated depending on the lesion’s size (largest diameter 10 mm).
Results
In 53 of 60 patients, all ribs were properly displayed in plane, in five patients ribs were partially displayed correctly, and in two patients none of the ribs were displayed correctly. During the 10-s screening approach all patients with sclerotic rib lesions were correctly identified reading the in-plane images (including the patients without a correct rib segmentation), whereas 14 of 23 patients were correctly identified reading conventional multiplanar images. Overall screening sensitivity, specificity, and positive/negative predictive values were 100/27.0/46.0/100 %, respectively, for in-plane reading and 60.9/100/100/80.4 %, respectively, for multiplanar reading. Overall diagnostic (no time limit) sensitivity, specificity, and positive/negative predictive values of in-plane reading were 97.8/92.8/74.6/99.5 %, respectively. False positive results predominantly occurred for lesions <5 mm in size.
Conclusions
In-plane reading of the ribs allows reliable detection of osteoblastic lesions for screening purposes. The limited specificity results from false positives predominantly occurring for small lesions
Current perspectives on bone metastases in castrate-resistant prostate cancer
Prostate cancer is the most frequent noncutaneous cancer occurring in men. On average, men with localized prostate cancer have
a high 10-year survival rate, and many can be cured. However, men with metastatic castrate-resistant prostate cancer have
incurable disease with poor survival despite intensive therapy. This unmet need has led to recent advances in therapy aimed at
treating bone metastases resulting from prostate cancer. The bone microenvironment lends itself to metastases in castrate-resistant
prostate cancer, as a result of complex interactions between the microenvironment and tumor cells. The development of 223radium
dichloride (Ra-223) to treat symptomatic bone metastases has improved survival in men with metastatic castrate-resistant
prostate cancer. Moreover, Ra-223 may have effects on the tumor microenvironment that enhance its activity. Ra-223 treatment
has been shown to prolong survival, and its effects on the immune system are under investigation. Because prostate cancer affects
a sizable portion of the adult male population, understanding how it metastasizes to bone is an important step in advancing
therapy. Clinical trials that are underway should yield new information on whether Ra-223 synergizes effectively with immunotherapy
agents and whether Ra-223 has enhancing effects on the immune system in patients with prostate cancer
Estimating the contribution of assembly activity to cortical dynamics from spike and population measures
The hypothesis that cortical networks employ the coordinated activity of groups of neurons, termed assemblies, to process information is debated. Results from multiple single-unit recordings are not conclusive because of the dramatic undersampling of the system. However, the local field potential (LFP) is a mesoscopic signal reflecting synchronized network activity. This raises the question whether the LFP can be employed to overcome the problem of undersampling. In a recent study in the motor cortex of the awake behaving monkey based on the locking of coincidences to the LFP we determined a lower bound for the fraction of spike coincidences originating from assembly activation. This quantity together with the locking of single spikes leads to a lower bound for the fraction of spikes originating from any assembly activity. Here we derive a statistical method to estimate the fraction of spike synchrony caused by assemblies—not its lower bound—from the spike data alone. A joint spike and LFP surrogate data model demonstrates consistency of results and the sensitivity of the method. Combining spike and LFP signals, we obtain an estimate of the fraction of spikes resulting from assemblies in the experimental data
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …