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Abstract—In this paper, a multirate loss model for the calcu-

lation of time and call congestion probabilities in a Wideband

Code Division Multiple Access (W-CDMA) cell is considered.

It utilizes the Bandwidth Reservation (BR) policy and sup-

ports calls generated by an infinite or finite number of users.

The BR policy achieves QoS equalization by equalizing conges-

tion probabilities among calls of different service-classes. In

the proposed models a multiple access interference is consid-

ered, and the notion of local blocking, user’s activity and in-

terference cancelation. Although the analysis of the proposed

models reveals that the steady state probabilities do not have

a product form solution, the authors show that the calculation

of time and call congestion probabilities can be based on ap-

proximate but recursive formulas, whose accuracy is verified

through simulation and found to be quite satisfactory.

Keywords—bandwidth reservation, infinite/finite sources, recur-

sive formula, time-call congestion probabilities, W-CDMA.

1. Introduction

Wideband Code Division Multiple Access (W-CDMA) net-

works support calls from different service-classes with het-

erogeneous Quality of Service (QoS) requirements. The

existence of own-cell and other-cell interference in these

networks, increases the complexity of the call-level analy-

sis both in the uplink (UL) and downlink directions.

We study the UL direction of a W-CDMA cell that has

fixed capacity and supports K service-classes whose calls

are generated by an infinite and finite number of sources. In

the first case, the call arrival process is the Poisson process

while in the second case the call arrival process is a quasi-

random process [1]. Calls of service-class k (k = 1, . . . ,K)
have a fixed bandwidth requirement and an exponentially

distributed service time. According to the CDMA principle

of W-CDMA networks a call is noise for all in-service calls.

Therefore, a new call is accepted in the cell if its bandwidth

requirement is available and the noise of all in-service calls

remains below a tolerable level.

To take into account the interference increase caused by the

acceptance of the new call, the notion of Local Blocking

(LB) was adopted in analysis. The latter means that a new

call can be blocked in any system state, if its acceptance

results in the increase of noise of all in-service calls above

a threshold.

We model a reference W-CDMA cell as a multirate tele-

traffic loss system, and aim at calculating Time and Call

Congestion Probabilities (TC and CC probabilities, respec-

tively) via recursive formulas [2]–[4]. In [2]–[4], the cal-

culation of congestion probabilities is based on the classi-

cal Kaufman-Roberts recursive formula used in the Erlang

Multirate Loss Model (EMLM). The Kaufman-Roberts

formula determines, in an efficient way, the link occupancy

distribution for a single link that accommodates, under

the Complete Sharing (CS) policy, Poisson calls of K ser-

vice-classes with different bandwidth requirements and gen-

erally distributed service time [5], [6]. In [2], an exten-

sion of the EMLM is proposed, based on the Delbrouck’s

model (where a Bernoulli/Poisson/Pascal call arrival pro-

cess is considered) [7]. This model allows new calls to

have different peakedness factors. In [3], new calls are gen-

erated by an infinite number of sources, i.e., calls follow

a Poisson process. In [4], calls come from a finite number

of sources, a rather realistic case since cells have limited

coverage area. As far as the LB modeling is concerned,

two approaches exist in the literature. The first ensures

reversibility in the underlying Markov state transition di-

agram but is complex [2]. We adopt the second approach,

proposed in [3], since it is simpler and more realistic for

W-CDMA systems. The interested reader may resort to [4]

for a comparison of these approaches.

In this paper, a research from [3] and [4] is extended by

applying the Bandwidth Reservation (BR) policy to guar-

antee call-level QoS for each service-class. In particular,

an equalization of TC or CC probabilities is achieved

among different service-classes by reserving bandwidth

in favor of service-classes whose calls have high band-

width requirements. Applications of the BR policy in wired

(e.g., [8]–[13]), wireless (e.g., [14]–[17]) and optical net-

works (e.g., [18],[19]) show the importance of the policy

in teletraffic engineering. In addition, the authors study the

effect of Interference Cancelation (IC) on congestion proba-

bilities and provide recursive formulas for their calculation.

Note that IC receivers reduce own-cell interference and

thus decrease congestion [4].
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This paper is organized as follows. In Section 2, the ba-

sic formulas in the UL of a W-CDMA cell are reviewed.

In Section 3, random (Poisson) arrivals are considered

and recursive formulas for the calculation of TC and CC

probabilities under the BR policy are proposed. In Sec-

tion 4, the case of quasi-random arrivals is considered.

In Section 5, numerical results are presented and evaluated

by simulation. The paper is concluded in Section 6.

2. Basic Formulas in the UL

of a W-CDMA Cell

Consider the UL direction of a W-CDMA reference cell

which is controlled by a Base Station (BS) and surrounded

by other cells. This cell is modeled as a multirate loss

system that supports K different service-classes. A service-

class k (k = 1, . . . ,K) call, when accepted in the sys-

tem, alternates between transmission (active) and non-

transmission (passive) periods. The ratio of “active” over

“active + passive” periods is the activity factor of a service-

class k call, vk.

In the W-CDMA cell, a user “sees” the signals generated

by other users as interference. Thus, the BS’s capacity is

limited by the own-cell interference, Pown, caused by the

users of the reference cell and the other-cell interference,

Pother, caused by the interference power received from users

of the neighboring cells. Due to the stochastic nature of

interference, we consider the interference limited capacity

of the radio interface. Thermal noise is also considered,

Pnoise, which corresponds to the interference of an empty

W-CDMA system. The values of Pown are reduced by the

application of IC, whose efficiency, β , can be determined

by [20]:

β =
PNo IC

own −Pown

PNo IC
own

⇒ Pown = PNo IC
own (1−β ) , (1)

where PNo IC
own is the own-cell interference without IC.

Let Pk be the total received power from a service-class k
user. Then, the power control equation is [20]:

(Eb/N0)k =
GkPk

(Pown −Pk)(1−β )+Pother +Pnoise
, (2)

where (Eb/N0)k is the signal energy per bit divided by the

noise spectral density, Gk = W/vkRk is the processing gain

of service-class k in the UL with data rate Rk and W the

chip rate of 3840 kcps. Based on Eq. (2), the values of Pk
are given by:

Pk =(Pown(1−β )+Pother+Pnoise)/(1−β +Gk/(Eb/N0)k) .
(3)

Assuming that Pown = PkNk, where Nk is the maximum

number of service-class k calls in the cell, we have [4]:

Pown =
Nk(Pother+Pnoise)

1−β−Nk(1−β )+Gk/(Eb/N0)k
. (4)

Consider now the Noise Rise (NR), defined as [21]:

NR = Ptotal
/

Pnoise = (Pown +Pother +Pnoise)
/

Pnoise , (5)

where Ptotal=Pown+Pother+Pnoise is the total received power

at the BS.

The relation between the NR and the total UL cell load,

ηUL, is given by [22]:

NR = 1
/

(1−ηUL), ηUL = (Pown +Pother)
/

Ptotal . (6)

Based on Eqs. (4)–(6) it is proved that [4]:

Nk =
[

(1−β )+Gk
/(

Eb
/

N0
)

k

] [ηUL(δ+1)−δ ]
[1−β (ηUL(δ+1)−δ )] ,

δ ≡ Pother/Pnoise .
(7)

Based on Eq. (7), the spread data rate Rs,k of service-class k,

as a proportion of W is determined:

Rs,k = W
/

Nk . (8)

Now, we transform W and Rs,k to the capacity C and the

bandwidth bk, of each service-class k, respectively. This

is achieved by considering a basic bandwidth unit (bbu)

as the greatest common divisor of the bandwidth of all

service-classes, or as an arbitrarily chosen small value. So,

C =
⌈

W
/

bbu
⌉

and bk =
⌈

Rs,k
/

bbu
⌉

channels.

3. Congestion Probabilities Under

the BR Policy – the Case

of Random Arrivals

Consider a new service-class k call that arrives in the cell

according to a Poisson process with mean arrival rate λk
and requires bk channels in order to be accepted in the

system. Let j be the number of occupied cell’s channels

at the time of arrival, j=0,1, . . . ,C. Also, let tk be the BR

parameter that expresses the reserved channels to benefit

calls of all service-classes other than service-class k. Due

to the BR policy, the service-class k call is not allowed

to enter the states j =C−tk+1, . . . ,C. These states form

the so-called reservation space of service-class k. So, after

the acceptance of the call, j ≤ C−tk, i.e., the available

capacity upon the call arrival is C− tk − j. Now two types

of blocking states j are considered: hard blocking states

due to bandwidth unavailability and soft (local) blocking

states with a probability 0 < L j,k < 1 (LB states) due to

the other-cell interference. The latter is approximated by

an independent, lognormally distributed random variable,

with parameters µ and σ [4]:

µ =
Pother +Pnoise

Pown+Pother+Pnoise
C ⇒ µ =

i+ i/δ
1+i+i/δ

C, σ =µ , (9)

where i = Pother/Pown.

The LB probability (LBP) in state j, L j, is the probability

that the other-cell interference is greater than the available

cell’s capacity (C−tk− j) [4]:

L j = 1−P
(

j′ < C−tk− j
)

= 1−CDF(C−tk− j) , (10)
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where j′ refers to the occupied channels due to the other

cell interference and CDF(x) is the cumulative distribution

function of the lognormal distribution.

The values of CDF(x) are given by:

CDF(x) =
1
2

(

1+ er f
(

ln(x)−M
S
√

2

))

, (11)

where erf is the error function, while M and S refer to the

parameters of the normal distribution:

M = ln
(

µ2
/

√

µ2 +σ 2
)

, S =
√

ln
(

1+
(

σ2
/

µ2
))

. (12)

The service-class k call is accepted in the cell if all bk
channels are assigned to the call simultaneously. Thus, it

is assumed that Pother and LBP do not alter during this

allocation process. We express the passage factor 1−L j,bk ,

i.e., the probability that the call is not blocked due to the

other-cell interference as a function of j and bk:

1−L j,bk = 1−L j+bk+1 = CDF(C− tk − j−bk +1) . (13)

Thus, the transition rate from ( j − bk) to ( j) equals
(

1−L j−bk,bk

)

λk =
(

1−L j−1
)

λk. Figure 1 presents an ex-

cerpt of the system’s state transition diagram, which is de-

picted by a one-dimensional Markov chain. Note that µk is

the mean service rate of service-class k calls, while yk( j)
is the average number of service-class k calls in state j.

0 j-bk

(1- )Lj-1 k

y jk( ) k

j C

Fig. 1. State transition diagram for Poisson arriving service-class

k calls with LB between states j−bk and j.

To calculate the un-normalized values of the system state

probabilities, q(j), the following approximate but recursive

formula is proposed:

qinf( j)=



























1, for j = 0
1
j

K
∑

k=1
akDk( j−bk)qinf( j−bk)(1−L j−bk,bk)

for j = 1, ...,C
0, otherwise

, (14)

Dk( j−bk) =

{

bk for j ≤C−tk
0 for j > C−tk

, (15)

where: αk = λk/µk is the offered traffic-load of service-

class k calls (in erl), tk is the BR parameter, while the

values of
(

1−L j−bk,bk

)

are determined by:

(

1−L j−bk,bk

)

= 1−L j−1 = CDF(C− tk − j +1) . (16)

Note that Eq. (15) facilitates the introduction of the BR

policy in the model. The underlying assumption of Eq. (15)

is that the population of service k calls, which require bk
channels while tk> 0, is negligible inside the reservation

space of service-class k, i.e., when j = C–tk+1,. . . , C. In the

case of the CS policy, Eq. (14) takes the form [3], [4]:

qinf( j)=























1, for j = 0
1
j

K
∑

k=1
akbkqinf( j−bk)(1−L j−bk,bk),

for j = 1, . . . ,C
0, otherwise

. (17)

If we do not consider the existence of LB, then the classi-

cal Roberts’ formula for the EMLM under the BR policy

arises [8]:

qinf( j)=















1, for j=0
1
j

K
∑

k=1
akDk( j−bk)qinf( j−bk), for j=1,. . . ,C

0, otherwise

,

(18)

where the values of Dk( j−bk) are given by Eq. (15).

Having determined qin f (j)’s according to Eq. (14), TC

probabilities of service-class k, Pbk , can be calculated as

follows:

Pbk =
C

∑
j=0

G−1L j, j+bkqinf( j) , (19)

where G = ∑C
j=0 qinf( j) is the normalization constant and

the values of L j, j+bk = 1−CDF(C− tk − j−bk +1).

Note that TC probabilities refer to the proportion of time

the system is congested, while CC probabilities refer to the

proportion of arriving calls that find the system congested.

TC and CC probabilities coincide in the case of Poisson

arrivals due to the PASTA property [1].

4. Congestion Probabilities Under

the BR Policy – the Case

of Quasi-Random Arrivals

In the case of quasi-random arrivals, this part follows

again the analysis of Section 3 up to Eq. (13). At this

point, the transition rate from ( j − bk) to ( j), becomes:
(

1−L j−bk,bk

)

(Sk−nk( j−bk))γk =
(

1−L j−1
)

(Sk−nk( j−bk))γk,

where Sk is the finite number of service-class k traffic

sources, γk is the arrival rate from an idle source of service-

class k and nk( j) is the average number of service-class k

0 j-bk

(1- )( - ( ))L S n j-bj b b k k k- ,k k k

n jk( ) k

j C

Fig. 2. State transition diagram for quasi-random arriving

service-class k calls with LB between states j−bk and j.
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calls in state j. Figure 2 shows the corresponding one-

dimensional Markov chain.

To determine the un-normalized values of q(j)’s we propose

the following recursive formula, for j = 1, . . . , C:

q( j)=
1
j

K

∑
k=1

(Sk−nk( j)+1)ak,finDk( j−bk)q( j−bk)(1−L j−bk,bk),

(20)

where: q(0)=1, q(x)=0 for x < 0, ak,fin = γk/µk is the of-

fered traffic-load per idle source of service-class k (in erl),

nk( j−bk) = nk( j)−1, nk( j) refers to the number of in-

service calls of service-class k in state j, while the val-

ues of Dk( j−bk) and
(

1−L j−bk,bk

)

are given by Eqs. (15)

and (16), respectively.

In the case of the CS policy, Eq. (20) takes the form [4]:

q( j) =
1
j

K

∑
k=1

(Sk−nk( j)+1)ak, f inbkq( j−bk)(1−L j−bk,bk) ,

(21)

Note that if Sk → ∞ for k = 1, . . . , K, and the total of-

fered traffic-load remains constant, then the call arrival pro-

cess is Poisson. In that case, Eqs. (20) and (21) become

Eqs. (14) and (17), respectively.

The determination of q(j)’s in Eqs. (20) or (21) requires the

values of nk( j) in each state j. These values are unknown

and difficult to be determined. In other finite multirate loss

models (e.g., [23]–[26]) there exist methods for the deter-

mination of nk( j) through an equivalent stochastic system,

with the same traffic description parameters and exactly the

same set of states. However, the state space determination

of the equivalent system is complex, especially for large ca-

pacity systems that serve many service-classes. Thus, nk(j)

is approximated, as the mean number of service-class k

calls in state j, yk(j), when Poisson arrivals are considered,

i.e., nk( j) ≈ yk( j) and consequently nk( j)−1 ≈ yk( j−bk).
Such approximations induce little error (e.g., [27]–[33]).

Based on the abovementioned approximation, Eqs. (20)

and (21) take the form of (22) and (23), respectively:

q( j)=
1
j

K

∑
k=1

(Sk−yk( j−bk))ak,finDk( j−bk)q( j−bk)(1−L j−bk,bk),

(22)

q( j)=
1
j

K

∑
k=1

(Sk−yk( j−bk))ak,finbkq( j−bk)(1−L j−bk,bk), (23)

where the values of yk(j), for Poisson arrivals, are given

by:

yk( j) = ak(1−L j−bk,bk)qinf( j−bk)
/

qinf( j) . (24)

Having determined LBP by Eq. (16) and q(j)’s by Eq. (22)

TC probabilities of service-class k calls is calculated, Pbk ,

based on Eq. (19). Equation (19) can also be used for the

determination of CC probabilities of service-class k, but

q(j)’s should be calculated by Eq. (22) assuming Sk − 1
traffic sources.

5. Numerical Examples – Evaluation

The authors compare the analytical and simulation TC

probabilities results obtained by the proposed models for

different values of the IC efficiency β . For further com-

parison, the corresponding analytical results obtained in

the case of the CS policy, for both Poisson and quasi-

random arrivals [4] are also shown. Simulations are based

on the SIMSCRIPT III language [34] and are mean values

of 7 runs.

Consider a W-CDMA reference cell that accommodates

quasi-random arriving calls of K=3 different service-

classes. Accepted calls remain in the system for an expo-

nentially distributed service time with mean value µ−1
1 =

µ−1
2 = µ−1

3 = 1. Table 1 presents the traffic characteris-

tics of all service-classes. In addition, the following as-

sumptions were made: ηUL = 0.75, i = 0.35, δ =2, bbu =
13.5 kcps, while the IC efficiency β takes the values 0.0

and 0.8. When β = 0, the bandwidth requirements and

the corresponding BR parameters of all service-classes

are: b1 = 4, b2 = 7, b3 = 64 and t1 = 60, t2 = 57, t3 = 0.

The values of the BR parameters are chosen according

to the rule: b1+t1 = b2+t2 = b3, to achieve equalization

of congestion probabilities. Similarly, when β =0.8 then

b1 =4, b2 =5, b3 =54 and t1 =50, t2 =49, t3 =0.

Table 1

Traffic parameters of all service-classes

Serv.- Rk vk

( Eb
N0

)

k
( Eb

N0

)

k Sk
ak,fin ak

class k [kb/s] [dB] [erl] [erl]

1 7.95 0.67 4.0 2.51 20 0.15 3.0

2 12.20 0.67 4.0 2.51 10 0.20 2.0

3 144.00 1.00 2.0 1.58 5 0.01 0.05

In the x-axis of Figs. 3–8 the offered traffic load of the

1st, 2nd and 3rd service-class increase in steps of 0.05,

0.10 and 0.002 erl, respectively. So, point 1 refers to:

(a1,fin, a2,fin, a3,fin = (0.15, 0.20, 0.01) while point 6 to:

(a1,fin, a2,fin, a3,fin = (0.40, 0.70, 0.02). Figures 3–4 present

the analytical and simulation results of the 1st service-class

for β = 0 and 0.8, respectively. Similarly, in Figs. 5–6

and 7–8, the corresponding results of the 2nd and 3rd

service-class are presented, respectively. The proposed for-

mulas for the calculation of the occupancy distribution and

consequently TC probabilities in the case of the BR policy

give quite accurate results in comparison with the simula-

tion results. The increase of β results in the TC proba-

bilities decrease, since the IC reduces the own-cell inter-

ference. The TC probabilities obtained by considering the

CS policy fail to approximate the corresponding TC prob-

abilities in the case of the BR policy. The application of

the BR policy results in a slight decrease of the TC prob-

abilities of the 3rd service-class compared to the increase

of the TC probabilities of the other two service-classes.

This is expected since the bandwidth per call requirement

of the 3rd service-class is much higher (64 b.u.) than the

requirements of the other service-classes (7 and 4 b.u.).
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Fig. 3. TC probabilities – 1st service-class (β = 0).
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Fig. 4. TC probabilities – 1st service-class (β = 0.8).
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Fig. 5. TC probabilities – 2nd service-class (β = 0).
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Fig. 6. TC probabilities – 2nd service-class (β = 0.8).
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Fig. 7. TC probabilities – 3rd service-class (β = 0).
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Fig. 8. TC probabilities – 3rd service-class (β = 0.8).

6. Conclusion

In this paper authors propose multirate loss models for

the call-level analysis of a W-CDMA reference cell that

supports calls from different service-classes with different

bandwidth requirements. New call arrivals follow a Poisson

arrival process, or a quasi-random arrival process. The pro-

posed models take into account important peculiarities of

wireless networks, such as multiple access interference, the

notion of local blocking, user’s activity, interference can-

celation and the BR policy. The latter is used to achieve

equalization of congestion probabilities among calls of dif-

ferent service-classes. Due to the existence of local block-

ing and the BR policy in the proposed models, the calcu-

lation of the occupancy distribution (and consequently of

time and cal congestion probabilities) is based on an ap-

proximate but recursive formula. Simulation results verify

the proposed model accuracy.
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