195 research outputs found
Angiogenic signaling in the lungs of a metabolically suppressed hibernating mammal (Ictidomys tridecemlineatus)
To conserve energy in times of limited resource availability, particularly during cold winters, hibernators suppress even the most basic of physiologic processes. Breathing rates decrease from 40 breaths/minute to less than 1 breath/min as they decrease body temperature from 37oC to ambient. Nevertheless, after months of hibernation, these incredible mammals emerge from torpor unscathed. This study was conducted to better understand the protective and possibly anti-inflammatory adaptations that hibernator lungs may use to prevent damage associated with entering and emerging from natural torpor. We postulated that the differential protein expression of soluble protein receptors (decoy receptors that sequester soluble ligands to inhibit signal transduction) would help identify inhibited inflammatory signaling pathways in metabolically suppressed lungs. Instead, the only two soluble receptors that responded to torpor were sVEGFR1 and sVEGFR2, two receptors whose full-length forms are bound by VEGF-A to regulate endothelial cell function and angiogenesis. Decreased sVEGFR1/2 correlated with increased total VEGFR2 protein levels. Maintained or increased levels of key ã-secretase subunits suggested that decreased sVEGFR1/2 protein levels were not due to decreased levels of intramembrane cleavage complex subunits. VEGF-A protein levels did not change, suggesting that hibernators may regulate VEGFR1/2 signaling at thes level of the receptor instead of increasing relative ligand
Comparison of Glasgow Admission Prediction Score and Amb Score in predicting need for inpatient care.
AIM: We compared the abilities of two established clinical scores to predict emergency department (ED) disposition: the Glasgow Admission Prediction Score (GAPS) and the Ambulatory Score (Ambs). METHODS: The scores were compared in a prospective, multicentre cohort study. We recruited consecutive patients attending ED triage at two UK sites: Northern General Hospital in Sheffield and Glasgow Royal Infirmary, between February and May 2016. Each had a GAPS and Ambs calculated at the time of triage, with the triage nurses and treating clinicians blinded to the scores. Patients were followed up to hospital discharge. The ability of the scores to discriminate discharge from ED and from hospital at 12 and 48 hours after arrival was compared using the area under the curve (AUC) of their receiving-operator characteristics (ROC). RESULTS: 1424 triage attendances were suitable for analysis during the study period, of which 567 (39.8%) were admitted. The AUC for predicting admission was significantly higher for GAPS at 0.807 (95% CI 0.785 to 0.830), compared with 0.743 (95% CI 0.717 to 0.769) for Ambs, P12 hour and >48 hour. GAPS was also more accurate as a binary test, correctly predicting 1057 outcomes compared with 1004 for Ambs (74.2vs70.5%, P=0.012). CONCLUSION: The GAPS is a significantly better predictor of need for hospital admission than Ambs in an unselected ED population
Mean-field results on the Anderson impurity model out of equilibrium
We investigate the mean-field phase diagram of the Anderson impurity model
out of equilibrium. Generalising the unrestricted Hartree-Fock approach to the
non-equilibrium situation we derive and analyse the system of equations
defining the critical surface separating the magnetic regime from the
non-magnetic one. An exact analytic solution for the phase boundary as a
function of the applied voltage is found in the symmetric case. Surprisingly,
we find that as soon as there is an asymmetry, even small, between the
contacts, no finite voltage is able to destroy the magnetic regime which
persists at arbitrary high voltages.Comment: 4 pages, 2 figures (eps files); to appear in PRB Brief Report
Dynamics of an Unbounded Interface Between Ordered Phases
We investigate the evolution of a single unbounded interface between ordered
phases in two-dimensional Ising ferromagnets that are endowed with
single-spin-flip zero-temperature Glauber dynamics. We examine specifically the
cases where the interface initially has either one or two corners. In both
examples, the interface evolves to a limiting self-similar form. We apply the
continuum time-dependent Ginzburg-Landau equation and a microscopic approach to
calculate the interface shape. For the single corner system, we also discuss a
correspondence between the interface and the Young tableau that represents the
partition of the integers.Comment: 9 pages, 11 figures, 2-column revtex4 format. V2: references added
and discussion section expanded slightly. Final version for PRE. V3: A few
small additional editorial change
Multicentre, prospective observational study of the correlation between the Glasgow Admission Prediction Score and adverse outcomes
Objectives: To assess whether the Glasgow Admission Prediction Score (GAPS) is correlated with hospital length of stay, 6-month hospital readmission and 6-month all-cause mortality. This study represents a 6-month follow-up of patients who were included in an external validation of the GAPS’ ability to predict admission at the point of triage.
Setting: Sampling was conducted between February and May 2016 at two separate emergency departments (EDs) in Sheffield and Glasgow.
Participants: Data were collected prospectively at triage for consecutive adult patients who presented to the ED within sampling times. Any patients who avoided formal triage were excluded from the study. In total, 1420 patients were recruited.
Primary outcomes: GAPS was calculated following triage and did not influence patient management. Length of hospital stay, hospital readmission and mortality against GAPS were modelled using survival analysis at 6 months.
Results: Of the 1420 patients recruited, 39.6% of these patients were initially admitted to hospital. At 6 months, 30.6% of patients had been readmitted and 5.6% of patients had died. For those admitted at first presentation, the chance of being discharged fell by 4.3% (95% CI 3.2% to 5.3%) per GAPS point increase. Cox regression indicated a 9.2% (95% CI 7.3% to 11.1%) increase in the chance of 6-month hospital readmission per point increase in GAPS. An association between GAPS and 6-month mortality was demonstrated, with a hazard increase of 9.0% (95% CI 6.9% to 11.2%) for every point increase in GAPS.
Conclusion: A higher GAPS is associated with increased hospital length of stay, 6-month hospital readmission and 6-month all-cause mortality. While GAPS’s primary application may be to predict admission and support clinical decision making, GAPS may provide valuable insight into inpatient resource allocation and bed planning
TeV-scale seesaw from a multi-Higgs model
We suggest new simple model of generating tiny neutrino masses through a
TeV-scale seesaw mechanism without requiring tiny Yukawa couplings. This model
is a simple extension of the standard model by introducing extra one Higgs
singlet, and one Higgs doublet with a tiny vacuum expectation value.
Experimental constraints, electroweak precision data and no large flavor
changing neutral currents, are satisfied since the extra doublet only has a
Yukawa interaction with lepton doublets and right-handed neutrinos, and their
masses are heavy of order a TeV-scale. Since active light neutrinos are
Majorana particles, this model predicts a neutrinoless double beta decay.Comment: 21 pages, 8 figure
Kondo effect induced by a magnetic field
We study peculiarities of transport through a Coulomb blockade system tuned
to the vicinity of the spin transition in its ground state. Such transitions
can be induced in practice by application of a magnetic field. Tunneling of
electrons between the dot and leads mixes the states belonging to the ground
state manifold of the dot. Remarkably, both the orbital and spin degrees of
freedom of the electrons are engaged in the mixing at the singlet-triplet
transition point. We present a model which provides an adequate theoretical
description of recent experiments with semiconductor quantum dots and carbon
nanotubes
Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology
We discuss the Hamiltonian dynamics for cosmologies coming from Extended
Theories of Gravity. In particular, minisuperspace models are taken into
account searching for Noether symmetries. The existence of conserved quantities
gives selection rule to recover classical behaviors in cosmic evolution
according to the so called Hartle criterion, that allows to select correlated
regions in the configuration space of dynamical variables. We show that such a
statement works for general classes of Extended Theories of Gravity and is
conformally preserved. Furthermore, the presence of Noether symmetries allows a
straightforward classification of singularities that represent the points where
the symmetry is broken. Examples of nonminimally coupled and higher-order
models are discussed.Comment: 20 pages, Review paper to appear in EPJ
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
- …