377 research outputs found

    Cancer-cell intrinsic gene expression signatures overcome intratumoural heterogeneity bias in colorectal cancer patient classification

    Get PDF
    Stromal-derived intratumoural heterogeneity (ITH) has been shown to undermine molecular stratification of patients into appropriate prognostic/predictive subgroups. Here, using several clinically relevant colorectal cancer (CRC) gene expression signatures, we assessed the susceptibility of these signatures to the confounding effects of ITH using gene expression microarray data obtained from multiple tumour regions of a cohort of 24 patients, including central tumour, the tumour invasive front and lymph node metastasis. Sample clustering alongside correlative assessment revealed variation in the ability of each signature to cluster samples according to patient-of-origin rather than region-of-origin within the multi-region dataset. Signatures focused on cancer-cell intrinsic gene expression were found to produce more clinically useful, patient-centred classifiers, as exemplified by the CRC intrinsic signature (CRIS), which robustly clustered samples by patient-of-origin rather than region-of-origin. These findings highlight the potential of cancer-cell intrinsic signatures to reliably stratify CRC patients by minimising the confounding effects of stromal-derived ITH

    Role of rapid urease test and histopathology in the diagnosis of Helicobacter pylori infection in a developing country

    Get PDF
    BACKGROUND: The aim of this study was to determine the effect of commonly self-prescribed proton pump inhibitors (PPI) on the results of rapid urease test and histology for the diagnosis of H. pylori infection. METHODS: One hundred-nine consecutive patients with dyspeptic symptoms attending the endoscopy suite were enrolled in this study. Antrum biopsy specimens were collected at endoscopy for the rapid urease test (Pronto Dry, Medical Instrument Corp, France) and histopathology. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and like-hood ratio of a positive and negative of Pronto Dry test were compared against histology. The gold standard test for the diagnosis of H. pylori infection was histopathology. RESULTS: Sixty-one percent (66/109) patients were males with mean age of 43 ± 14.1 years and age range 17–80 years. Fifty-two percent (57/109) were not on any medications while 48% (52/109) used PPI before presentation to the outpatients. Pronto Dry was positive in 40% (44/109) and negative in 60% (65/109). Histopathology was positive for H. pylori in 57% (62/109) and negative in 43% (47/109). The sensitivity, specificity, PPV, NPV and like-hood ratio of a positive and negative Pronto Dry test with and without PPI were 43.3%, 86.4%, 81.3%, 3.18, 0.656 and 52.8% vs 71.9%, 80%, 82.1%, 69%, 3.59 and 0.35. CONCLUSION: This study shows that the sensitivity, specificity, NPV and PPV of rapid urease test was reduced in patients who are on PPI. The exclusive use of the rapid urease test for the diagnosis of Helicobacter pylori cannot be recommended in patients with prior PPI use

    In-depth clinical and biological exploration of DNA Damage Immune Response (DDIR) as a biomarker for oxaliplatin use in colorectal cancer

    Get PDF
    PURPOSE: The DNA Damage Immune Response (DDIR) assay was developed in breast cancer (BC) based on biology associated with deficiencies in homologous recombination and Fanconi Anemia (HR/FA) pathways. A positive DDIR call identifies patients likely to respond to platinum-based chemotherapies in breast and oesophageal cancers. In colorectal cancer (CRC) there is currently no biomarker to predict response to oxaliplatin. We tested the ability of the DDIR assay to predict response to oxaliplatin-based chemotherapy in CRC and characterised the biology in DDIR-positive CRC. METHODS: Samples and clinical data were assessed according to DDIR status from patients who received either 5FU or FOLFOX within the FOCUS trial (n=361, stage 4), or neo-adjuvant FOLFOX in the FOxTROT trial (n=97, stage 2/3). Whole transcriptome, mutation and immunohistochemistry data of these samples were used to interrogate the biology of DDIR in CRC. RESULTS: Contrary to our hypothesis, DDIR negative patients displayed a trend towards improved outcome for oxaliplatin-based chemotherapy compared to DDIR positive patients. DDIR positivity was associated with Microsatellite Instability (MSI) and Colorectal Molecular Subtype 1 (CMS1). Refinement of the DDIR signature, based on overlapping interferon-related chemokine signalling associated with DDIR positivity across CRC and BC cohorts, further confirmed that the DDIR assay did not have predictive value for oxaliplatin-based chemotherapy in CRC. CONCLUSIONS: DDIR positivity does not predict improved response following oxaliplatin treatment in CRC. However, data presented here suggests the potential of the DDIR assay in identifying immune-rich tumours that may benefit from immune checkpoint blockade, beyond current use of MSI status

    Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

    Get PDF
    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations

    5-Fluorouracil Induced Intestinal Mucositis via Nuclear Factor-ÎșB Activation by Transcriptomic Analysis and In Vivo Bioluminescence Imaging

    Get PDF
    5-Fluorouracil (5-FU) is a commonly used drug for the treatment of malignant cancers. However, approximately 80% of patients undergoing 5-FU treatment suffer from gastrointestinal mucositis. The aim of this report was to identify the drug target for the 5-FU-induced intestinal mucositis. 5-FU-induced intestinal mucositis was established by intraperitoneally administering mice with 100 mg/kg 5-FU. Network analysis of gene expression profile and bioluminescent imaging were applied to identify the critical molecule associated with 5-FU-induced mucositis. Our data showed that 5-FU induced inflammation in the small intestine, characterized by the increased intestinal wall thickness and crypt length, the decreased villus height, and the increased myeloperoxidase activity in tissues and proinflammatory cytokine production in sera. Network analysis of 5-FU-affected genes by transcriptomic tool showed that the expression of genes was regulated by nuclear factor-ÎșB (NF-ÎșB), and NF-ÎșB was the central molecule in the 5-FU-regulated biological network. NF-ÎșB activity was activated by 5-FU in the intestine, which was judged by in vivo bioluminescence imaging and immunohistochemical staining. However, 5-aminosalicylic acid (5-ASA) inhibited 5-FU-induced NF-ÎșB activation and proinflammatory cytokine production. Moreover, 5-FU-induced histological changes were improved by 5-ASA. In conclusion, our findings suggested that NF-ÎșB was the critical molecule associated with the pathogenesis of 5-FU-induced mucositis, and inhibition of NF-ÎșB activity ameliorated the mucosal damage caused by 5-FU

    An approach for particle sinking velocity measurements in the 3–400 ÎŒm size range and considerations on the effect of temperature on sinking rates

    Get PDF
    The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 ÎŒm by means of video microscopy (FlowCAMÂź). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean

    Talking about smoking cessation with post-natal women: Exploring midwives’ experiences

    Get PDF
    This study explored midwives’ experiences of talking to post-natal women about smoking cessation. Face-to-face semi structured interviews were held with seven midwives based in the UK. Thematic analysis identified themes which provided understanding as to factors determining discussion of smoking cessation. Six themes were identified which were Post-natal Women Factors, Midwife Factors, Providing Information, Involving Others, Priorities, and Whole Family Approach. Implications for midwives working with post-natal women are discussed, including the need to increase the involvement of other healthcare professionals in supporting post-natal women to stop smoking
    • 

    corecore