5,898 research outputs found

    Performance of pilot-scale microbial fuel cells treating wastewater with associated bioenergy production in the Caribbean context

    Get PDF
    Microbial fuel cell (MFC) technology represents a form of renewable energy that generates bioelectricity from what would otherwise be considered a waste stream. MFCs may be ideally suited to the small island developing state (SIDS) context, such as Trinidad and Tobago where seawater as the main electrolyte is readily available and economical renewable and sustainable electricity is also deemed a priority. Hence this project tested two identical laboratory-scaled MFC systems that were specifically designed and developed for the Caribbean regional context. They consisted of two separate chambers, an anaerobic anodic chamber inoculated with wastewater and an aerobic cathodic chamber separated by a proton exchange membrane. Domestic wastewater from two various wastewater treatment plants inflow (after screening) was placed into the anodic chamber, and seawater from the Atlantic Ocean and Gulf of Paria placed into the cathodic chambers respectively with the bacteria present in the wastewater attaching to the anode. Experimental results demonstrated that the bacterial degradation of the wastewaters as substrate induced an electron flow through the electrodes producing bioelectricity whilst simultaneously reducing the organic matter as biochemical oxygen demand and chemical oxygen demand by 30 to 75%. The average bioenergy output for both systems was 84 mW/m² and 96 mW/m² respectively. This study demonstrated the potential for simultaneous bioenergy production and wastewater treatment in the SIDS context

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    Angiogenic signaling in the lungs of a metabolically suppressed hibernating mammal (Ictidomys tridecemlineatus)

    Get PDF
    To conserve energy in times of limited resource availability, particularly during cold winters, hibernators suppress even the most basic of physiologic processes. Breathing rates decrease from 40 breaths/minute to less than 1 breath/min as they decrease body temperature from 37oC to ambient. Nevertheless, after months of hibernation, these incredible mammals emerge from torpor unscathed. This study was conducted to better understand the protective and possibly anti-inflammatory adaptations that hibernator lungs may use to prevent damage associated with entering and emerging from natural torpor. We postulated that the differential protein expression of soluble protein receptors (decoy receptors that sequester soluble ligands to inhibit signal transduction) would help identify inhibited inflammatory signaling pathways in metabolically suppressed lungs. Instead, the only two soluble receptors that responded to torpor were sVEGFR1 and sVEGFR2, two receptors whose full-length forms are bound by VEGF-A to regulate endothelial cell function and angiogenesis. Decreased sVEGFR1/2 correlated with increased total VEGFR2 protein levels. Maintained or increased levels of key ã-secretase subunits suggested that decreased sVEGFR1/2 protein levels were not due to decreased levels of intramembrane cleavage complex subunits. VEGF-A protein levels did not change, suggesting that hibernators may regulate VEGFR1/2 signaling at thes level of the receptor instead of increasing relative ligand

    Circular 64

    Get PDF
    Treatment of Alaska-produced food products by ionizing radiation may benefit the seafood and agricultural industries and the Alaskan consumer. A feasibility study to evaluate the potential social and economic benefits and risks as well as the costs of using the process in Alaska on Alaskan products is being coordinated by the Institute of Northern Engineering. A research and development project to determine effects on the quality o f Alaskan products could be the next phase in the introduction o f a new food-preservation technique to Alaska

    From junior to senior Pinocchio: A cross-sectional lifespan investigation of deception

    Get PDF
    We present the first study to map deception across the entire lifespan. Specifically, we investigated age-related difference in lying proficiency and lying frequency. A large community sample (n = 1005) aged between 6 and 77 were surveyed on their lying frequency, and performed a reaction-time (RT) based deception task to assess their lying proficiency. Consistent with the inverted U-shaped pattern of age-related changes in inhibitory control that we observed in a stop signal task, we found that lying proficiency improved during childhood (in accuracy, not RTs), excelled in young adulthood (in accuracy and RTs), and worsened throughout adulthood (in accuracy and RTs). Likewise, lying frequency increased in childhood, peaked in adolescence, and decreased during adulthood. In sum, we observed important age-related difference in deception that generally fit with the U-shaped pattern of age-related changes observed in inhibitory control. Theoretical and practical implications are discussed from a cognitive view of deception

    Anderson impurities in gapless hosts: comparison of renormalization group and local moment approaches

    Full text link
    The symmetric Anderson impurity model, with a soft-gap hybridization vanishing at the Fermi level with power law r > 0, is studied via the numerical renormalization group (NRG). Detailed comparison is made with predictions arising from the local moment approach (LMA), a recently developed many-body theory which is found to provide a remarkably successful description of the problem. Results for the `normal' (r = 0) impurity model are obtained as a specific case. Particular emphasis is given both to single-particle excitation dynamics, and to the transition between the strong coupling (SC) and local moment (LM) phases of the model. Scaling characteristics and asymptotic behaviour of the SC/LM phase boundaries are considered. Single-particle spectra are investigated in some detail, for the SC phase in particular. Here, the modified spectral functions are found to contain a generalized Kondo resonance that is ubiquitously pinned at the Fermi level; and which exhibits a characteristic low-energy Kondo scale that narrows progressively upon approach to the SC->LM transition, where it vanishes. Universal scaling of the spectra as the transition is approached thus results. The scaling spectrum characteristic of the normal Anderson model is recovered as a particular case, and is captured quantitatively by the LMA. In all cases the r-dependent scaling spectra are found to possess characteristic low-energy asymptotics, but to be dominated by generalized Doniach-Sunjic tails, in agreement with LMA predictions.Comment: 26 pages, 14 figures, submitted for publicatio

    Marine Monitoring Program: Annual report for inshore coral reef monitoring 2014-2015

    Get PDF
    This report summarises the results of coral reef monitoring activities, carried out by the Australian Institute of Marine Science as part of the Marine Monitoring Program (MMP) from 2014 to 2015

    Marine Monitoring Program: Annual report for inshore coral reef monitoring 2015-2016

    Get PDF
    This project is supported by the Great Barrier Reef Marine Park Authority through funding from the Australian Government Reef Program, the Reef 2050 Integrated Monitoring, and Reporting Program and AIMS

    Expected length of the longest common subsequence for large alphabets

    Full text link
    We consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that the expected value of L, when normalized by n, converges to a constant C_k. We prove a conjecture of Sankoff and Mainville from the early 80's claiming that C_k\sqrt{k} goes to 2 as k goes to infinity.Comment: 14 pages, 1 figure, LaTe
    corecore