6,955 research outputs found
A spin-dependent local moment approach to the Anderson impurity model
We present an extension of the local moment approach to the Anderson impurity
model with spin-dependent hybridization. By employing the two-self-energy
description, as originally proposed by Logan and co-workers, we applied the
symmetry restoration condition for the case with spin-dependent hybridization.
Self-consistent ground states were determined through variational minimization
of the ground state energy. The results obtained with our spin-dependent local
moment approach applied to a quantum dot system coupled to ferromagnetic leads
are in good agreement with those obtained from previous work using numerical
renormalization group calculations
Evaluating Primary Blast Effects In Vitro
Exposure to blast events can cause severe trauma to vital organs such as the lungs, ears, and brain. Understanding the mechanisms behind such blast-induced injuries is of great importance considering the recent trend towards the use of explosives in modern warfare and terrorist related incidents. To fully understand blast-induced injury, we must first be able to replicate such blast events in a controlled environment using a reproducible method. In this technique using shock tube equipment, shock waves at a range of pressures can be propagated over live cells grown in 2D, and markers of cell viability can be immediately analyzed using a redox indicator assay and the fluorescent imaging of live and dead cells. This method demonstrated that increasing the peak blast overpressure to 127 kPa can stimulate a significant drop in cell viability when compared to untreated controls. Test samples are not limited to adherent cells, but can include cell suspensions, whole-body and tissue samples, through minor modifications to the shock tube setup. Replicating the exact conditions that tissues and cells experience when exposed to a genuine blast event is difficult. Techniques such as the one presented in this article can help to define damage thresholds and identify the transcriptional and epigenetic changes within cells that arise from shock wave exposure
A trans-diagnostic perspective on obsessive-compulsive disorder
© Cambridge University Press 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Progress in understanding the underlying neurobiology of obsessive-compulsive disorder (OCD) has stalled in part because of the considerable problem of heterogeneity within this diagnostic category, and homogeneity across other putatively discrete, diagnostic categories. As psychiatry begins to recognize the shortcomings of a purely symptom-based psychiatric nosology, new data-driven approaches have begun to be utilized with the goal of solving these problems: specifically, identifying trans-diagnostic aspects of clinical phenomenology based on their association with neurobiological processes. In this review, we describe key methodological approaches to understanding OCD from this perspective and highlight the candidate traits that have already been identified as a result of these early endeavours. We discuss how important inferences can be made from pre-existing case-control studies as well as showcasing newer methods that rely on large general population datasets to refine and validate psychiatric phenotypes. As exemplars, we take 'compulsivity' and 'anxiety', putatively trans-diagnostic symptom dimensions that are linked to well-defined neurobiological mechanisms, goal-directed learning and error-related negativity, respectively. We argue that the identification of biologically valid, more homogeneous, dimensions such as these provides renewed optimism for identifying reliable genetic contributions to OCD and other disorders, improving animal models and critically, provides a path towards a future of more targeted psychiatric treatments.Peer reviewedFinal Published versio
Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466,
No. DE-FG02-04ER54761, No. DE-AC05-06OR23100,
No. DE-SC0001961, and No. DE-AC05-00OR22725.
S. R. H. was supported by AINSE and ANSTO
Analytical approximation for single-impurity Anderson model
We have applied the recently developed dual fermion technique to the spectral
properties of single-band Anderson impurity problem (SIAM). In our approach a
series expansion is constructed in vertices of the corresponding atomic
Hamiltonian problem. This expansion contains a small parameter in two limiting
cases: in the weak coupling case (), due to the smallness of the
irreducible vertices, and near the atomic limit (), when bare
propagators are small. Reasonable results are obtained also for the most
interesting case of strong correlations (). The atomic problem of
the Anderson impurity model has a degenerate ground state, so the application
of the perturbation theory is not straightforward. We construct a special
approach dealing with symmetry-broken ground state of the renormalized atomic
problem. Formulae for the first-order dual diagram correction are obtained
analytically in the real-time domain. Most of the Kondo-physics is reproduced:
logarithmic contributions to the self energy arise, Kondo-like peak at the
Fermi level appears, and the Friedel sum rule is fulfilled. Our approach
describes also renormalization of atomic resonances due to hybridization with a
conduction band. A generalization of the proposed scheme to a multi-orbital
case can be important for the realistic description of correlated solids.Comment: 6 pages, 5 figure
Varenicline Reduces Alcohol Intake During Repeated Cycles of Alcohol Reaccess Following Deprivation in Alcohol-Preferring (P) Rats
Background
Most alcoholics experience periods of voluntary alcohol abstinence or imposed alcohol deprivation followed by a return to alcohol drinking. This study examined whether varenicline (VAR) reduces alcohol intake during a return to drinking after periods of alcohol deprivation in rats selectively bred for high alcohol drinking (the alcohol preferring or “P” rats).
Methods
Alcohol-experienced P rats were given 24-hour access to food and water and scheduled access to alcohol (15% and 30% v/v) for 2 h/d. After 4 weeks, rats were deprived of alcohol for 2 weeks, followed by reaccess to alcohol for 2 weeks, and this pattern was repeated for a total of 3 cycles. Rats were fed either vehicle (VEH) or VAR, in doses of 0.5, 1.0, or 2.0 mg/kg BW, at 1 hour prior to onset of the daily alcohol reaccess period for the first 5 days of each of the 3 alcohol reaccess cycles.
Results
Low-dose VAR (0.5 mg/kg BW) reduced alcohol intake during the 5 days of drug treatment in alcohol reaccess cycles 1 and 2. Higher doses of VAR (1.0 mg/kg BW and 2.0 mg/kg BW) reduced alcohol intake during the 5 days of treatment in all 3 alcohol reaccess cycles. The decrease in alcohol intake disappeared with termination of VAR treatment in all alcohol reaccess cycles.
Conclusions
The results demonstrate that VAR decreases alcohol intake during multiple cycles of alcohol reaccess following alcohol deprivation in rats and suggests that it may prevent a return to heavy alcohol drinking during a lapse from alcohol abstinence in humans with alcohol use disorder
Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications
Stripping cross sections in nitrogen have been calculated using the classical
trajectory approximation and the Born approximation of quantum mechanics for
the outer shell electrons of 3.2GeV I and Cs ions. A large
difference in cross section, up to a factor of six, calculated in quantum
mechanics and classical mechanics, has been obtained. Because at such high
velocities the Born approximation is well validated, the classical trajectory
approach fails to correctly predict the stripping cross sections at high
energies for electron orbitals with low ionization potential.Comment: submitted to Phys. Rev.
Development of Early Adiposity in Infants of Mothers With Gestational Diabetes Mellitus
OBJECTIVE
Infants born to mothers with gestational diabetes mellitus (GDM) are at greater risk of later adverse metabolic health. We examined plausible candidate mediators, adipose tissue (AT) quantity and distribution and intrahepatocellular lipid (IHCL) content, comparing infants of mothers with GDM and without GDM (control group) over the first 3 postnatal months.
RESEARCH DESIGN AND METHODS
We conducted a prospective longitudinal study using MRI and spectroscopy to quantify whole-body and regional AT volumes, and IHCL content, within 2 weeks and 8–12 weeks after birth. We adjusted for infant size and sex and maternal prepregnancy BMI. Values are reported as the mean difference (95% CI).
RESULTS
We recruited 86 infants (GDM group 42 infants; control group 44 infants). Mothers with GDM had good pregnancy glycemic control. Infants were predominantly breast-fed up to the time of the second assessment (GDM group 71%; control group 74%). Total AT volumes were similar in the GDM group compared with the control group at a median age of 11 days (−28 cm3 [95% CI −121, 65], P = 0.55), but were greater in the GDM group at a median age of 10 weeks (247 cm3 [56, 439], P = 0.01). After adjustment for size, the GDM group had significantly greater total AT volume at 10 weeks than control group infants (16.0% [6.0, 27.1], P = 0.002). AT distribution and IHCL content were not significantly different at either time point.
CONCLUSIONS
Adiposity in GDM infants is amplified in early infancy, despite good maternal glycemic control and predominant breast-feeding, suggesting a potential causal pathway to later adverse metabolic health. Reduction in postnatal adiposity may be a therapeutic target to reduce later health risks.
</jats:sec
Optical and Infrared Photometry of the Unusual Type Ia Supernova 2000cx
We present optical and infrared photometry of the unusual Type Ia supernova
2000cx. With the data of Li et al. (2001) and Jha (2002), this comprises the
largest dataset ever assembled for a Type Ia SN, more than 600 points in
UBVRIJHK. We confirm the finding of Li et al. regarding the unusually blue B-V
colors as SN 2000cx entered the nebular phase. Its I-band secondary hump was
extremely weak given its B-band decline rate. The V minus near infrared colors
likewise do not match loci based on other slowly declining Type Ia SNe, though
V-K is the least ``abnormal''. In several ways SN 2000cx resembles other slow
decliners, given its B-band decline rate (Delta m_15(B) = 0.93), the appearance
of Fe III lines and weakness of Si II in its pre-maximum spectrum, the V-K
colors and post-maximum V-H colors. If the distance modulus derived from
Surface Brightness Fluctuations of the host galaxy is correct, we find that the
rate of light increase prior to maximum, the characteristics of the bolometric
light curve, and the implied absolute magnitude at maximum are all consistent
with a sub-luminous object with Delta m_15(B) ~ 1.6-1.7 having a higher than
normal kinetic energy.Comment: 46 pages, 17 figures, to be published in Publications of the
Astronomical Society of the Pacifi
- …
