5,751 research outputs found
Magnetic properties of the Anderson model: a local moment approach
We develop a local moment approach to static properties of the symmetric
Anderson model in the presence of a magnetic field, focussing in particular on
the strong coupling Kondo regime. The approach is innately simple and
physically transparent; but is found to give good agreement, for essentially
all field strengths, with exact results for the Wilson ratio, impurity
magnetization, spin susceptibility and related properties.Comment: 7 pages, 3 postscript figues. Latex 2e using the epl.cls Europhysics
Letters macro packag
Spectral scaling and quantum critical behaviour in the pseudogap Anderson model
The pseudogap Anderson impurity model provides a classic example of an
essentially local quantum phase transition. Here we study its single-particle
dynamics in the vicinity of the symmetric quantum critical point (QCP)
separating generalized Fermi liquid and local moment phases, via the local
moment approach. Both phases are shown to be characterized by a low-energy
scale that vanishes at the QCP; and the universal scaling spectra, on all
energy scales, are obtained analytically. The spectrum precisely at the QCP is
also obtained; its form showing clearly the non-Fermi liquid, interacting
nature of the fixed point.Comment: 7 pages, 2 figure
Dynamics and transport properties of heavy fermions: theory
The paramagnetic phase of heavy fermion systems is investigated, using a
non-perturbative local moment approach to the asymmetric periodic Anderson
model within the framework of dynamical mean field theory. The natural focus is
on the strong coupling Kondo-lattice regime wherein single-particle spectra,
scattering rates, dc transport and optics are found to exhibit w/w_L,T/w_L
scaling in terms of a single underlying low-energy coherence scale w_L.
Dynamics/transport on all relevant (w,T)-scales are encompassed, from the
low-energy behaviour characteristic of the lattice coherent Fermi liquid,
through incoherent effective single-impurity physics likewise found to arise in
the universal scaling regime, to non-universal high-energy scales; and which
description in turn enables viable quantitative comparison to experiment.Comment: 27 pages, 12 figure
Single-particle dynamics of the Anderson model: a two-self-energy description within the numerical renormalization group approach
Single-particle dynamics of the Anderson impurity model are studied using
both the numerical renormalization group (NRG) method and the local moment
approach (LMA). It is shown that a 'two-self-energy' description of dynamics
inherent to the LMA, as well as a conventional 'single-self-energy'
description, arise within NRG; each yielding correctly the same local
single-particle spectrum. Explicit NRG results are obtained for the broken
symmetry spectral constituents arising in a two-self-energy description, and
the total spectrum. These are also compared to analytical results obtained from
the LMA as implemented in practice. Very good agreement between the two is
found, essentially on all relevant energy scales from the high-energy Hubbard
satellites to the low-energy Kondo resonance.Comment: 12 pages, 6 figure
Evaluating Primary Blast Effects In Vitro
Exposure to blast events can cause severe trauma to vital organs such as the lungs, ears, and brain. Understanding the mechanisms behind such blast-induced injuries is of great importance considering the recent trend towards the use of explosives in modern warfare and terrorist related incidents. To fully understand blast-induced injury, we must first be able to replicate such blast events in a controlled environment using a reproducible method. In this technique using shock tube equipment, shock waves at a range of pressures can be propagated over live cells grown in 2D, and markers of cell viability can be immediately analyzed using a redox indicator assay and the fluorescent imaging of live and dead cells. This method demonstrated that increasing the peak blast overpressure to 127 kPa can stimulate a significant drop in cell viability when compared to untreated controls. Test samples are not limited to adherent cells, but can include cell suspensions, whole-body and tissue samples, through minor modifications to the shock tube setup. Replicating the exact conditions that tissues and cells experience when exposed to a genuine blast event is difficult. Techniques such as the one presented in this article can help to define damage thresholds and identify the transcriptional and epigenetic changes within cells that arise from shock wave exposure
Single-particle dynamics of the Anderson model: a local moment approach
A non-perturbative local moment approach to single-particle dynamics of the
general asymmetric Anderson impurity model is developed. The approach
encompasses all energy scales and interaction strengths. It captures thereby
strong coupling Kondo behaviour, including the resultant universal scaling
behaviour of the single-particle spectrum; as well as the mixed valent and
essentially perturbative empty orbital regimes. The underlying approach is
physically transparent and innately simple, and as such is capable of practical
extension to lattice-based models within the framework of dynamical mean-field
theory.Comment: 26 pages, 9 figure
A spin-dependent local moment approach to the Anderson impurity model
We present an extension of the local moment approach to the Anderson impurity
model with spin-dependent hybridization. By employing the two-self-energy
description, as originally proposed by Logan and co-workers, we applied the
symmetry restoration condition for the case with spin-dependent hybridization.
Self-consistent ground states were determined through variational minimization
of the ground state energy. The results obtained with our spin-dependent local
moment approach applied to a quantum dot system coupled to ferromagnetic leads
are in good agreement with those obtained from previous work using numerical
renormalization group calculations
Dynamics of capacitively coupled double quantum dots
We consider a double dot system of equivalent, capacitively coupled
semiconducting quantum dots, each coupled to its own lead, in a regime where
there are two electrons on the double dot. Employing the numerical
renormalization group, we focus here on single-particle dynamics and the
zero-bias conductance, considering in particular the rich range of behaviour
arising as the interdot coupling is progressively increased through the strong
coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the
charge-Kondo regime; and then towards and through the quantum phase transition
to a charge-ordered (CO) phase. We first consider the two-self-energy
description required to describe the broken symmetry CO phase, and implications
thereof for the non-Fermi liquid nature of this phase. Numerical results for
single-particle dynamics on all frequency scales are then considered, with
particular emphasis on universality and scaling of low-energy dynamics
throughout the SC phase. The role of symmetry breaking perturbations is also
briefly discussed.Comment: 14 pages, 6 figure
Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics
The pseudogap Anderson impurity model provides a paradigm for understanding
local quantum phase transitions, in this case between generalised fermi liquid
and degenerate local moment phases. Here we develop a non-perturbative local
moment approach to the generic asymmetric model, encompassing all energy scales
and interaction strengths and leading thereby to a rich description of the
problem. We investigate in particular underlying phase boundaries, the critical
behaviour of relevant low-energy scales, and single-particle dynamics embodied
in the local spectrum. Particular attention is given to the resultant universal
scaling behaviour of dynamics close to the transition in both the GFL and LM
phases, the scale-free physics characteristic of the quantum critical point
itself, and the relation between the two.Comment: 39 pages, 19 figure
- …