5,202 research outputs found

    Improved pulse shape discriminator for fast neutron-gamma ray detection system

    Get PDF
    Discriminator in nuclear particle detection system distinguishes nuclear particle type and energy among many different nuclear particles. Discriminator incorporates passive, linear circuit elements so that it will operate over a wide dynamic range

    Energetic solar particle fluxes out to 3 AU during the 7 May 1978 flare event

    Get PDF
    Simultaneous solar proton flux measurements on IMP 7 and by the world wide neutron monitor network during the May 7, 1978 flare event led to conclusions that in the energy range from 50 MeV to 10 GeV: (1) the propagation of the flare particles in the interplanetary magnetic field (IMF) between the Sun and the Earth was nearly scatter free; and (2) therefore, the intensity time (IT) profiles of the solar proton fluxes observed at Earth for about one hour after onset represent the solar injection profiles even to energies as low as 50 MeV. Observations of the IMF at Helios A indicate that the IMF was undisturbed between the Sun and Helios A at the time of the May 7, 1978 flare event; and, therefore, the solar particle propagation was also scatter free from the Sun to Helios A

    Design of a neutron monitor for measurements in space scientific report no. 1

    Get PDF
    Neutron detection system for space measurement

    The cosmic ray interplanetary radial gradient from 1972 - 1985

    Get PDF
    It is now established that the solar modulation of cosmic rays is produced by turbulent magnetic fields propagated outward by the solar wind. Changes in cosmic ray intensity are not simultaneous throughout the modulation region, thus requiring time dependent theories for the cosmic ray modulation. Fundamental to an overall understanding of this observed time dependent cosmic ray modulation is the behavior of the radial intensity gradient with time and heliocentric distance over the course of a solar modulation cycle. The period from 1977 to 1985 when data are available from the cosmic ray telescopes on Pioneer (P) 10, Voyager (V) 1 and 2, and IMP 8 spacecraft is studied. Additional data from P10 and other IMP satellites for 1972 to 1977 can be used to determine the gradient at the minimum in the solar modulation cycle and as a function of heliocentric distance. All of these telescopes have thresholds for protons and helium nuclei of E 60 MeV/nucleon

    Magnon squeezing in an antiferromagnet: reducing the spin noise below the standard quantum limit

    Get PDF
    At absolute zero temperature, thermal noise vanishes when a physical system is in its ground state, but quantum noise remains as a fundamental limit to the accuracy of experimental measurements. Such a limitation, however, can be mitigated by the formation of squeezed states. Quantum mechanically, a squeezed state is a time-varying superposition of states for which the noise of a particular observable is reduced below that of the ground state at certain times. Quantum squeezing has been achieved for a variety of systems, including the electromagnetic field, atomic vibrations in solids and molecules, and atomic spins, but not so far for magnetic systems. Here we report on an experimental demonstration of spin wave (i.e., magnon) squeezing. Our method uses femtosecond optical pulses to generate correlations involving pairs of magnons in an antiferromagnetic insulator, MnF2. These correlations lead to quantum squeezing in which the fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground state quantum noise. The mechanism responsible for this squeezing is stimulated second order Raman scattering by magnon pairs. Such squeezed states have important ramifications in the emerging fields of spintronics and quantum computing involving magnetic spin states or the spin-orbit coupling mechanism

    The intensity recovery of Forbush-type decreases as a function of heliocentric distance and its relationship to the 11-year variation

    Get PDF
    Recent data indicating that the solar modulation effects are propagated outward in the heliospheric cavity suggest that the 11-year cosmic ray modulation can best be described by a dynamic time dependent model. In this context an understanding of the recovery characteristics of large transient Forbush type decreases is important. This includes the typical recovery time at a fixed energy at 1 AU as well as at large heliocentric radial distances, the energy dependence of the recovery time at 1 Au, and the dependence of the time for the intensity to decrease to the minimum in the transient decreases as a function of distance. These transient decreases are characterized by their asymmetrical decrease and recovery times, generally 1 to 2 days and 3 to 10 days respectively at approx. 1 AU. Near earth these are referred to as Forbush decreases, associated witha shock or blast wave passage. At R equal to or greater than + or - 10 AU, these transient decreases may represent the combined effects of several shock waves that have merged together

    Latitudinal gradients of cosmic rays and the polarity reversal of the heliospheric magnetic field: A preliminary evaluation

    Get PDF
    Within the statistical limits imposed by the currently available data and the noise inherent in the determination of the latitudinal gradient, no evidence for the expected change in the latitudinal gradient from pre-1980 to post-1980 epochs can be found. In addition, the rigidity dependence of the gradient appears to be the same in the two epochs. Thus, no evidence is found for a sensitivity of the latitudinal gradient to the polarity of the largescale heliospheric magnetic field such as has been predicted by models incorporating particle drifts
    • …
    corecore