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ENERGETIC SOLAR PARTICLE FLUXES OUT TO 3 AU DURING THE
MAY 7, 1978 FLARE EVENT

Lockwood, J.A.
Space Science Center, University of New Hampshire, Durham, NH 03824, USA

Debrunner, H.
Physikalisches Institut, University of Bern, 3012 Bern, Switzerland

Simultaneous solar proton flux measurements on IMP 7 and by the
world-wide neutron monitor network during the May 7, 1978 flare event
led us to conclude that in the energy range from 50 MeV to 10 GeV:
1) the propagation of the flare particles in the interplanetary
magnetic field (IMF) between the sun and the earth was nearly scatter-
free; and 2) therefore, the intensity-time (IT) profiles of the solar
proton fluxes observed at earth for about one hour after onset re-
present the solar injection profiles even to energies as low as 50 MeV
(Debrunner et al., 1984). Observations of the IMF at Helios A indicate
that the IMF was undisturbed between the sun and Helios A at the time

of the May 7, 1978 flare event; and, therefore, we infer that the solar
particle propagation was also scatter-free from the sun to Helios A. We
then made a detailed study of the acceleration and coronal transport of
the flare particles and their injection into the IMF using the fine-
time resolution data from IMP 7 and Helios A (Lockwood and Debrunner,
1983, 1985). The relative positions of IMP 7 and Helios A spacecraft
along with the solar flare location are shown in Fig. 1. The IMF lines

are drawn for a solar wind speed _ = 480 km/s. As an example of thesolar particle fluxes observed at 7 and Helios A we show in Fig. 2
the responses of the energy channel with E _ 90 MeV. The coronal
transport was then analysed by assuming ame_ke acceleration of the
protons at the flare site and by using the Reid (1964) and Axford
(1965) model of two-dimensionaldiffusion with losses. Comparing the
(IT) profiles from_IMP _ and Helios A_we found that the coronal diffu-
sion coefficient D_ [cmZ/s] _ 4.4_.I0'_ (E [MeV] )_ _for 20 MeV < E <
500 MeV and that t_e loss rate 6 _ _ (2.9 ± 0.5) hr-" for 90 MeV < E <
500 MeV. To test the validity of the model used and the deduced
parameters we then calculated the ratios of the maximum solar proton
fluxes at IMP 7 and Helios A for the energy channels E _ 90 MeV.median
and _ 350 MeV. The calculated ratios agree with the ooserveo ones to
within a factor of 2 which is good agreement. The constancy of the
factor with energy further confirms the results of this analysis.

Here we apply the same model to interpret the solar proton fluxes
observed on the Voyager (V) spacecraft, the locations of which are also
given in Fig. 1. The solar particle fluxes for the two high energy
telescopes (HET) from 70 MeV < E < 500 MeV (E .. _ 107 MeV) at V1

• . me lad .
and V2 are combined and shown zn Fzg. 3. The com_znatzon of the data is
valid because the counting rates of the four HETs agreed within
statistical fluctuations. In Fig. 3 we also show the (IT) profile
(shaded area) expected at V according to our model of only coronal

transport without IMF diffusion. Comparing the onset time and (IT) _
profile of the theoretical response (no IMF diffusion) with the
observed ones it is clear that the propagation of the solar protons was
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diffusive beyond the orbit of the earth. In order to include the
effects of the IMF diffusion we must determine the extent of the region
over which the diffusion took place. We examined the plasma and
magnetic field data on Helios A from April 25 to May 7, the Kp data at
earth from April 29 to May 10, and magnetic field and solar wind data
on VI and V2 from May 7 to May 17. The shocks and/or disturbed regions
found on May 7, 1978, at 0300 UT are indicated in Fig. 4. In this

figure we have also shown the IMF limes to Voyager for VS = 420, 455,
and 490 km/s. We infer that the propagation of the so_ar particles
along the IMF lines to Voyager was scatter-free for r < 1.6 AU and
diffusive for r _ 1.6 AU.

To describe the diffusive propagation of the flare protons for
r _ 1.6 AU we assume as explained in Fig. 5 one-dimensional diffusion
along the IMF lines with a constant mean free path _ , an "absorbing"
barrier at x = -2 X , and a 6-like injection of N particles at
x = O, t = O. The presence of an "absorbing" barrier at x = -2 I is the
equivalent physical description of the transition of the flare protons
from the undisturbed to the disturbed region. The density of solar
particles is then:

n(x,t) : N . { exp ( x24Dt ) - exp ( [x+4X]24Dt)} (l)
2(_Dt)I/2

where D = X v, X = mean free path for scattering and v is the particle
velocity. If x >> X , then

2
N x

B
X

n(x,t) : • • exp ( ) (2)
{), Dt,V2 vt 4Dt

which exhibits the same time dependence as 3-dimensional diffusion. The
best fit of equation 2 to the Voyager data is found for X = 0.04 AU in
the range 1.6 AU _ r _ 3.0 AU. The theoretical data were normalized to
the observations at the time of maximum and shown in Fig. 3. The
agreement of the onset times and of the (IT) profiles over 3 days is
excellent. From the solar transport model and the data from IMP 7
(Lockwood and Debrunner, 1985) we can estimate the value of N and
predict the absolute maximum intensity at Voyager if we include the
effect of the divergent IMF (Parker, 1963). The ratio of the observed
to the predicted maximum fluxes at_these large distances from the sun
is strongly dependent upon the detailed structure of the IMF and

VS . For example, we find that for V_. = 420, 455 and 490 km/s the
ra_ios are 1.5, 5 and 15 respectivelg_ If we include the effect of
solar particles escaping from the diffusive region into the undisturbed
region (r < 1.6 AU), then being reflected in the undis£urbed region,
and later returning to the disturbed region, the ratios are reduced by
about a factor of 3. The resulting ratios of 0.5, 1.7 and 3
respectively are in very good agreement using such a simple physical
model.
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We conclude that the coronal transport model developed in Lockwood
and Debrunner (1985) and the description assumed here for the IMF diffu-
sive propagation predict the observed solar proton fluxes at Helios A
(r = 0.35 AU), near earth, and at the Voyager spacecraft (r = 3 AU) for
the May 7, 1978 solar flare event•
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