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I. Introduction. Recent observations of the cosmlc-ray modulation,
includlng partlcularly interplanetary radial gradient studies, have
helped to identify two key questions which need to be answered in order
to understand the cosmlc-ray modulation process. One question is
related to the Importance of cosmlc-ray particle drifts in both the
short-term and ll-year modulation process. The other question is
related to the degree to which the ll-year modulation process repre-
sents a superpositlon of transient (Forbush) decreases. Recent data
Indicating that the solar modulation effects are propagated outward In
the heliospherlc cavity [i,2,3,4] suggest that the ll-year cosmlc-ray
modulatlon can best be described by a dynamic tlme-dependent model.

In thls context an understanding of the recovery characterlstlcs
of large translent Forbush-type decreases is important. Th_s includes
the typical recovery tlme at a fixed energy at 1 AU as well as at
larger hellocentrlc radlal distances, the energy dependence of the
recovery tlme at 1 AU, and the dependence of the tlme for the intenslty
to decrease to the minimum in the transient decrease as a function of
distance. We characterize these transient decreases by their
asymmetrical decrease and recovery times, generally 1-2 days and 3-10
days respectively at _ 1 AU. Near earth these are referred to as

_orbush decreases, associated with a shock or blast wave passage. At R
- I0 AU, these translent decreases may represent the comblned effects
of several shock waves that have merged together.
2. Observations. About thirty transient decreases from 1972-1984
observed at 1 AU (Fig. I) for whlch data were available from the IMP
spacecraft (P median _ 1.7 GV) and the Mt. Washington neutron monitor
(P median % 5 GV) were analyzed to determine the characteristic reco-

very tlme t at earth. Certain selectlon crlterla were applled too
these decreases: a) magnitude - 3% as seen in daily average count rate
of the Mr. Washington neutron monitor; and, b) effects of solar
partlcles in the IMP cosmlc-ray data should be small or negligible.
The fractional decrease (AN/N) was calculated from the logarlthmlc
difference of the daily average counting rates recorded for three days
before the decrease and at the minimum. For the recovery it Is assumed

that n = n exp (-t/to),where n = £n N - £n N and n = £n N - £n N .
No is the _-day average intensity befor°ethe event, _ Is the°intensl_y
on day t and N is the mznlmum intensity (for details see [5]). In allm
cases the recovery could be fltted well by thls form.

In Flg. 2 we have plotted the characteristic recovery tlme, to,
derived in the manner described above for the IMP detector versus that
for the neutron monitor at Mr. Washington. Clearly the data are fitted
by t (MW) = t (IMP) wlth an average s 5 days which Implies that the
deca_ tlme in° these events is on the average the same for the two
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distance. We character~ze these trans~ent decreases by the~r 

asymmetrical decrease and recovery t~mes, generally 1-2 days and 3-10 
days respect~vely at '\, 1 AU. Near earth these are referred to as 
forbush decreases, assoc~ated with a shock or blast wave passage. At R 
- 10 AU, these trans~ent decreases may represent the comb~ned effects 
of several shock waves that have merged together. 
2. Observat~ons. About th~rty trans~ent decreases from 1972-1984 
observed at 1 AU (F~g. 1) for wh~ch data were ava~lable from the IMP 
spacecraft (P med~an '\, 1.7 GV) and the Mt. Wash~ngton neutron mon~tor 
(P med~an '\, 5 GV) were analyzed to determ~ne the character~st~c reco­
very t~me t at earth. Cert~~n select~on cr~ter~a were appl~ed to 
these decrea~es: a) magn~tude - 3% as seen in da~ly average count rate 
of the Mt. Wash~ngton neutron mon~tor; and, b) effects of solar 
part~cles ~n the IMP cosm~c-ray data should be small or negl~g~ble. 
The fract~onal decrease (llN/N) was calculated from the logar~thm~c 
d~fference of the daily average counting rates recorded for three days 
before the decrease and at the m~n~mum. For the recovery it ~s assumed 
that n = n exp (-tit ), where n = tn N - tn Nand n = tn N - tn N • 
N is the ~-day avera~e intens~ty befor~ the event, & ~s theO~ntens~~y 
oR day t and N ~s the ~n~mum ~ntensity (for deta~ls see [5]). In all 

m 
cases the recovery could be f~tted well by th~s form. 

In F~g. 2 we have plotted the characterl.stl.c recovery tl.me, t , 
derived in the manner descrl.bed above for the IMP detector versus th~t 
for the neutron monl.tor at Mt. Washl.ngton. Clearly the data are fl.tted 
by t (MW) = t (IMP) wl.th an average ;;; 5 days wh~ch ~mpll.es that the 

o 0 
decay t~me ~n these events ~s on the average the same for the two 
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instruments dlfferlng by a factor of 3 in the rlgldlty of thelr mean
responses. We also observe that: i) there is no slgnlflcant dlfference
in recovery tlmes for events classed as Co-rotatlng Interactlon Reglons
(CIR), having a more symmetrlcal decrease and recovery tlme, and the
classlcal Forbush-type translents; 2) t does not depend upon the
magnltude of the decrease; 3) t does no_ change slgnlflcantly before
and after the solar magnetlc fl_Id reversal in 1980; and 4) t is the
same in the decreaslng phase of the solar cycle (before 1981-i_82) and
in the recovery part of the cycle.

we have investlgated the hel_ocentrlc radial dependence of t foro
19 translent decreases, of whlch 16 were included _n the analysls of
the energy dependence of t above, utlllzlng addltlonal data from
cosmlc-ray telescopes (E > 60°MeV) on Voyagers 1 and 2, and Pioneer i0.

An additlonal crlterlo_ Imposed for this latter study is that (AN/N) of
the transient must be _ 10% as seen In the dally average count rate of
the IMP detector at 1 AU. Th_s latter crlterlon enables the translent

events to be more clearly identlfled _s they move outward and posslbly
coalesce w_th other decreases at R - i0 AU [6]. For 13 of the 19
events examlned we belleve that there is llttle doubt about the asso-
clat_on at various radlal d_stances. For only one transient decrease
is t less at larger R. In Fig. 3 we show an example of a translento
decrease whlch has been traced from 1 AU to 21 AU. The dependence of
t upon hellocentric radlal dlstance for the ensemble of all 16 eventso
is shown In Flg. 4. It is evldent that on the average the magnitude of
t becomes much longer as R increases [see 7]. The data shown is Flg. 4o

can be fltted by to(R)/to(1) = 1.26 exp (0.090R),where R is the radial
dlstance in AU.

From a comparlson of the magnltude of the "same" event (AN/N) at
dlfferent R we flnd no strong dependence of (AN/N) upon R. A posslble
reason for thls behavlor as opposed to a more rapld decrease in
magnltude expected for 9 sangle shock is that, as suggested by [6], the
translents seen at R - i0 AU probably represent the coalescence of
several smaller translents seen at 1 AU.

For i0 out of 19 translent decreases we also determlned the t_me T
from onset to the mlnlmum intens_ty as a functlon of R. We f_nd
T(R)/T(1) = i.i0 exp (0.055R)where T(R) Is the value at R and T(1) at
earth. This means that at R _ i0 AU zt takes about twlce as long to
reach mlnlmum. We f_nd that from 1 to 30 AU the ratio (t /T) increases
slowly, due to the longer recovery tlme at larger R. _he fact that
thls ratlo Is >> 1 clearly Indicates that we are observlng asymmetrlcal
transient decreases at large R, however.
3. Ph_slcal Model for the Observed Energy and Spatlal Dependence of

the Recovery Time. A physlcal model based upon a tlme-dependent,
two-dlmenslonal numerical solution to the cosmlc-ray transport wlth a
single shock weakening wlth dlstance has been developed by one of us
(JRJ) to study these translent events [8]. The transient is
represented by a dlsturbance propagated into the steady-state cosmic-
ray d_strlbutlon. The _ntensltaes at several rad_l and energies are
studied. Thls model predlcts that there should be only a small depend-
ence of t upon energy at a glven R as is observed. The varlatlon ofu
Intensity wath R depends mainly on the decay of the disturbance as it
propagates through the hellosphere. For an e-foldlng distance of 5-7
AU for the weakenlng of the shock, the varlatlon of the recovery tlme
wlth energy and heliocentric radlus is glven in Table i.
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Table 1: Var la t lon  of Recovery Tlme t Wlth Enerqy and H e l i o c e n t r l c  
0 

Radlus. 
Energy Distance 1.7 3.3 5.0 
IGeVl [AUI 
1 .3  5.3 7.5 9.7 
3.6 5.0 7.0 8.6 
9.1 4.5 5.9 7.6 

These p r o p e r t i e s  a r e  i n  e x c e l l e n t  q u a l l t a t l v e  agreement wl th  t h e  
observa t ions  repor ted  here.  P r e c l s e  quantitative agreement i s  n o t  
expected a t  t h l s  s t a g e  glven t h a t  t h e  model 1s only two-dlmenslonal and 
t h e  evolution of t h e  dxsturbance 1s q u i t e  slmple. 

We conclude that f o r  the translent decreases  observed here:  
1) t h e  average recovery t lme t from t r a n s i e n t  decreases  a t  1 AU i s  

0 
energy independent and t 1s % 5 days; 

0 
2) t i s  essentially t h e  same before  a s  a f t e r  t h e  s o l a r  magnetlc 

fPeld  reversed I n  1980; 
3) t 1s cons tan t  throughout t h e  s o l a r  modulation cycle ;  
4 )  tRe r a t l o  of recovery t lmes  t ( ~ ) / t  (1) i n c r e a s e s  wl th  R and IS 

about 5 t lmes  longer  a t  20 ~u ' than g t  1 AU; 
5 )  t h e  t lme f o r  t h e  decrease  t o  reach minimum, T, increases about 

10%/AU o u t  t o  20 AU; s o  t h a t  a t  20 AU lt 1s % 2 t lmes longer  than 
a t  1 AU; 

6 )  t h e s e  r e s u l t s  a r e  w e l l  descrxbed by a two-dimensional numerxcal 
s o l u t l o n  t o  t h e  cosmic-ray t r a n s p o r t  equat ion which i n c o r p o r a t e s  an 
outward movlng weakening shock. 
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Figure  Captions 

Fig. 1 M t .  Washington neutron monitor monthly average count r a t e .  
Upper pane l  xnd ica tes  t r a n s l e n t  decreases  > 3% observed a t  M t .  
Washington. 

Flg. 2 t f o r  IMP vs.  t f o r  M t .  Washington neutron monltor. 
Fig.  3 ~ 8 u n t  r a t e  of 1&8, Vl,V2, and PI0 f o r  t r a n s l e n t  decrease  

on J u l y  12,  1982. 
Fig. 4 Ra t lo  t o ( R ) / t o ( R  = 1) vs.  r a d l a l  d l s t a n c e  R. 
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Table 1: Var~at~on of Recovery T~me t W~th Energy and Hel~ocentr~c 
Rad~us. 

0 

Energy D~stance 1.7 3.3 5.0 
[GeV] [AU] 
1.3 5.3 7.5 9.7 
3.6 5.0 7.0 8.6 
9.1 4.5 5.9 7.6 

These properties are ~n excellent qual~tat~ve agreement w~th the 
observat~ons reported here. Prec~se quant~tat~ve agreement is not 
expected at th~s stage g~ven that the model ~s only two-d~mens~onal and 
the evolut~on of the d~sturbance ~s quite s~mple. 

We conclude that for the trans~ent decreases observed here: 
1) the average recovery t~me t from trans~ent decreases at 1 AU ~s 

o energy ~ndependent and t ~s ~ 5 days; 
o 2) t ~s essent~ally the same before as after the solar magnet~c 

o 
f~eld reversed ~n 1980; 

3) t ~s constant throughout the solar modulation cycle; 
4) tRe rat~o of recovery t~mes t (R)/t (1) increases w~th R and ~s 

o 0 
about 5 t~mes longer at 20 AU than at 1 AU; 

5) the t~me for the decrease to reach m~nimum, T, ~ncreases about 
10%/AU out to 20 AU; so that at 20 AU ~t ~s ~ 2 t~mes longer than 
at 1 AU; 

6) these results are well descr~bed by a two-d~mens~onal numer~cal 
solut~on to the cosmic-ray transport equation which incorporates an 
outward mov~ng weaken~ng shock. 
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Figure Capt~ons 

Fig. 1 

F~g. 2 
F~g. 3 

F~g. 4 

Mt. Washington neutron mon~tor monthly average count rate. 
Upper panel ~nd~cates trans~ent decreases > 3% observed at Mt. 
Wash~ngton. 

t for IMP vs. t for Mt. Wash~ngton neutron mon~tor. 
cgunt rate of I~8, V1,V2, and P10 for trans~ent decrease 
on July 12, 1982. 
Rat~o t (R)/t (R = 1) vs. rad~al d~stance R. 
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