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ABSTRACT 

k s'zudy has been made of s u i t a b l e  neutron 

de tec t ing  syscems f o r  space measurements. As a 

r e s u l t  of t h i s  inves t iga t ion  a neutron monitor, con- 

sisting of a H e 3  proportional counter encased i n  a 

polyethylene moderator which, i n  tu rn ,  i s  surrounded 

by charged particle counters, has been constructed 

and tested. The ef f ic iency  of t h i s  neutron d e t e c t o r  

system is 2.0 counts/neutron/cm* f o r  14 MeV neutrons 

and 20 cts/n/crn2 a t  thermal energies .  The e lec t ron-  

i c s  system is designed t o  r e j e c t  neutron events  

occurr ing wi th in  200 microseconds a f te r  a charged 

p a r t i c l e  counter is t r iggered,  thereby providing 

d iscr imina t ion  aga ins t  neutron production i n  the 

de tec to r .  
6 A L i  I s c i n t i l l a t o r  encased i n  a p l a s t i c  

s c i n t i l l a t o r  which acts  as both a moderator f o r  the 

neutrons and a charged p a r t i c l e  d e t e c t o r  has a l s o  

been built and tested. This d e t e c t o r  system was 

no t  adopted now as "space neutron monitor" because 

pulse  shaping c i r c u i t s  were required and the re- 

j e c t i o n  of gamma ray events was not  as good as f o r  

the He3 d e t e c t o r  system. Studies  have a l s o  been 

made of d e t e c t o r s  f o r  fast neutron measur 

and d i r e c t i o n a l  neutron f luxes.  
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Design of a Neutron Monitor f o r  Measurements i n  Space 

J. A .  Lockwood 
and 

L. A .  F r i l i n g  

Physics Department, University o f  New Hampshire, 
Durham, New Hampshire 

I. In t roduct ion  

A study has been made of d i f f e r e n t  types of 

neutron d e t e c t o r  systems f o r  measurements of the t o t a l  

neutron i n t e n s i t y  both  near  and fa r  from the earth. Such 

a neutron de tec t ion  system w i l l  be referred to as  a 

"space neutron monitor" because, i n  general ,  some moder- 

ating material will surround the neutron d e t e c t o r  i t sel f  

and charged p a r t i c l e  de tec tors  w i l l  be required t o  d i s -  

cr iminate  a g a i n s t  neutron production i n  the monitor. The 

design and t e s t i n g  of such a neutron space monitor t o  

measure the in tegra ted  neutron f l u x  up t o  about 10 Mev 

has been the  p r i n c i p l e  concern of t h i s  i nves t iga t ion .  

Preliminary 

measure the 

the neutron 

< 10 MeV.  

s t u d i e s  have a l s o  been made of d e t e c t o r s  t o  

energy spectrum and d i r e c t i o n a l  i n t e n s i t y  of 

flux above the atmosphere with 0.1 < En 

I n  the v i c i n i t y  of the e a r t h ,  but above t h e  e a r t h ' s  

atmosphere, the monitor w i l l  measure the neutron leakage 

f l u x  r e s u l t i n g  from neutron production i n  t h e  atmosphere 

of the e a r t h  by the normal primary cosmic r ad ia t ion .  On 

many occasions, a f t e r  large s o l a r  f lares,  there may be 

a n  enhanced neutron leakage f l u x  as a r e s u l t  of neutron 
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production I n  the atmosphere by s o l a r  protons and alphas.  

For most s o l a r  events such production would be confined t o  

regions near  the geomagnetic poles. On very r a r e  occasions, 

such as  after the 15 November 1960 s o l a r  f l a r e ,  i n  which 

ene rge t i c  protons (Ep-5 Bev) were produced, neutrons may be 

observed a t  low a l t i t u d e s  a t  lower geomagnetic l a t i t u d e s .  

> 

We may speculate  whether there are de tec tab le  f luxes  

of neutrons with 0.1 < En < 10 Mev a r r i v i n g  a t  the e a r t h  

d i r e c t l y  as a r e s u l t  of nuclear reac t ions  on t h e  s o l a r  su5- 

face.  It Is evident  that  such a neutron f l u x  would be d i f f l -  

c u l t  t o  measure in the presence of the l a rge  proton f luxes 

following s o l a r  flares. 

A t  l a rge  d is tances  from the earth, a neutron monitor 

would measure the neutron in t ens i ty  from o the r  sources.  For 

example, the presence of a neutron albedo about twice that 

f o r  the  earth, o r  0.17 n/cm2/sec, has been postulated for the 

moon (Rao, 1963). We might expect t he  t r a n s i t  times f rom the 

sun t o  a space vehicle  a t  large d is tances  from the e a r t h  t o  

be d i f f e r e n t  f o r  s o l a r  protons than for s o l a r  neutrons. Con- 

sequently,  the nature  of t h e  so l a r  f l a r e  mechanism and the 

propagation of the protons through the in t e rp l ane ta ry  f i e l d  

might be studied, 

I n  addl t lon,  t h i s  neutron de tec t ion  system, when flown 

near  the  ear th ,  can i n d i r e c t l y  monitor the intenai ty- t ime var- 

i a t i o n s  of the cosmic r ad ia t ion  because the neutron leakage 

f l u  is gener ica l ly  re la ted  t o  the primary cosmic r ad ia t ion  

In t e rac t ing  with the earth's atmosphere. 
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For meaningful comparisons of the neutron i n t e n s i t y  

above the atmosphere and i n  space, a "standard" neutron de -  

t e c t i o n  system should be used and located in ,  as near  as 

poss ib le ,  similar surroundings, p referab ly  removed from any 

high atomic number and hydrogenous materials. An accura te  

c a l i b r a t i o n  must be made of the d e t e c t o r ' s  energy response 

and abso lu te  e f f i c i ency  so that the r e s u l t  of d i f f e r e n t  

f l i gh t s  can be compared. We may write the counting rate 

of any neutron de tec t ing  system as  

C ( s ec - l )  = JN(E)S(E)dE,  

a 

0 
where N(E) i s  the d i f f e r e n t i a l  neutron energy spectrum as a 

func t ion  of energy and S ( E )  is the d e t e c t o r  e f f i c i ency  (an 

i n t r i n s i c  property of t h e  neutron de tec t ing  system). We 

can then compare theory w i t h  experiment provided S(E)  i s  

known. 

I n  the  design of  t h i s  neutron de tec t ing  system, w e  

were pr imari ly  concerned w i t h  i t s  use t o  measure the neutron 

Zeakage f l u x  near  the earth, a t  d i s t ances  of 100-500 miles. 

Studies  of the neutron leakage r e s u l t i n g  from the neutron 

production i n  the ear th 's  atmosphere by g a l a c t i c  and so la r  

cosmic rays  are important f o r  s e v e r a l  reasons: 

1. The albedo neutrons d i f fus ing  out of the e a r t h ' s  
atmosphere cont r ibu te  a t  least  par t  of the e l ec t rons  
and protons trapped i n  t h e  magnetosphere. 

2. The capture  of neutrons i n  atmospheric n i t rogen  1s 
respons ib le  f o r  the  production of the  age-da ing  nuc l ide  C 1 4 ,  through the  r e a c t i o n  N14(n,p)C1 8 . 
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3 .  The generic  r e l a t i o n  of the leakage f l u x  to lower energy 
por t ion  of the cosmic radiat ion.  

11. Survey of Neutron Measurements i n  Space 

Inves t iga t ions  h a v e  been made f o r  severa l  years of 

the  i n t e n s i t y  and spectrum of neutrons i n  the atmosphere 

(Simpson, 1951; Hess e t  a l . ,  1959; Bame e t  a l . ,  1963), and 

more recent ly  i n  sa te l l i t es  (Hess, 1960; =me e t  a l . ,  1960, 

1963; Trainor,  1963). For the most par t  these measurements 

have been sporadic ,  having been car r ied  o u t  a t  d i f f e r e n t  

l a t i t u d e s ,  a l t i t u d e s ,  and times of the s o l a r  cycle,  and gener- 

a l l y  with neutron de tec to r s  which are not d i r e c t l y  comparable. 

I n  order  t o  obta in  a value of the  neutron f lux  w i t h  these de -  

t e c t o r s ,  i t  i s  necessary t o  f o l d  together  the d e t e c t o r ' s  ener- 

gy dependent e f f i c i ency  and a r e l a t i v e  neutron spectrum. The 

neutron energy spectrum I s  not completely known and is a t  the  

present  t i m e  based upon a measurement i n  the  atmosphere 

(Hess e t  a l . ,  1961; Newklrk, 1963; Lingenfel ter ,  1963). The 

previous work, p a r t i c u l a r l y  with s a t e l l i t e  de tec tors ,  has 

not  been s u f f i c i e n t l y  extensive and severa l  outstanding pro- 

blems remain concerning the albedo neutron f lux .  Some of 

these are: 

1. Previous absolute  i n t e n s i t y  measurements are not a l l  
i n  agreement. 

2. The l a t i t u d e  and longitude dependence of t h e  t o t a l  
albedo neutron in t ens i ty  has not been measured. 

3.  The angular d i s t r i b u t i o n  i n  space of the  albedo neutrons 
i s  not  known, nor i s  the  energy d i s t r i b u t i o n  wel l  known 
even a t  one point  i n  space. 
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4. The va r i a t ion  wi th  t i m e  o f  the t o t a l  i n t e n s i t y  i n  the  
energy spectrum i s  unknown, e spec ia l ly  d u r i n g  s o l a r  
proton events.  

5. I n t e n s i t y  vs. d is tance from the e a r t h  i s  known only i n  
a l i m i t e d  sense. No d i r e c t  measurement has been made 
of the i n t e n s i t y  of the energet ic  albedo neutrons 
(E, > 10 MeV) which most  l i k e l y  cont r ibu te  t o  energe t ic  
protons i n  the inner  rad ia t ion  b e l t .  

The state of the ar t  f o r  neutron de tec to r s  f o r  space 

app l i ca t ion  has not ye t  reached the degree of soph i s t i ca t ion  

required t o  answer a l l  of the  above quest ions.  However, 

s eve ra l  may be at tacked by es tab l i sh ing  a program of t o t a l  

i n t e n s i t y  measurements on rockets  and satel l i tes .  Thus, 

properly designed t o t a l  neutron i n t e n s i t y  monitors on s a t e l -  

l i t e s  and rockets  could e luc ida te  these quest ions concerned 

wi th  va r i a t ions  of the t o t a l  i n t e n s i t y  in longitude, l a t i -  

tude, t i m e ,  and to some extent  w i t h  a l t i t u d e .  

Space neutron detectors  a r e  genera l ly  d i f f i c u l t  t o  

design properly because of the problem of the  production of 

charged p a r t i c l e s  i n  the de tec tor  and the  vehicle  carrying 

the  de tec tor .  The problem of l o c a l  production i n  the de-  

t e c t o r  can be avoided by the use of a charged-part ic le  

counter sh ie ld  around the monitor. (See Sect ion V ) .  The 

background neutron flux from the  space vehicle  can be evalu- 

a ted  by exposing the de tec to r  and the  vehicle  i tsel f  t o  a 

f l u x  of energe t ic  charged p a r t i c l e s ,  o r  by placing the  de- 

t e c t o r  so that  the  so l id  angle subtended a t  the  de t ec to r  by 

the  production source i n  the vehicle  i s  minimized. I n  gen- 

eral, the l a t t e r  i s  the des i rab le  method. I n  a l l  cases  any 

high 2, high densi’cy mater ia l  should be kept as f a r  a s  possi- 

b l e  from the  de t ec to r  assembly i tself .  



4 . 
b 

Several  experimental r e s u l t s  are now ava i l ab le  f o r  

comparison w i t h  the  neutron leakage ca lcu la t ions  of Hess, 

Canfield and Lingenfel ter  (1969, Newkirk (1963), and 

Lingenfel ter  (1963). These results are summarized i n  Table 

I. 

the  Sn approximation t o  t ransport  theory,  while Lingenfel ter  

has recalculated the neutron f l u x  of  Hess e t  a l .  using d i f -  

fus ion  theory. The e s s e n t i a l  d i f fe rences  between the  d i f fu -  

s i o n  ca lcu la t ions  are: 1) Lingenfel ter  has used an a l t i t u d e  

dependence f o r  his source funct ion a t  the t o p  of the atmos- 

phere based upon star production measurements of Lord (1951) 

r a t h e r  than a simple exponential ,  and 2) he has included the 

e f f e c t s  of i n e l a s t i c  sca t te r ing ,  thus s h i f t i n g  the higher  

energy neutrons t o  lower energies.  The ca lcu la t ions  of 

Newkirk a t  5 7 O  N are i n  good agreement wi th  those of Lingen- 

felter.  Lat i tude va r i a t ions  of w12 t o  1 a t  s o l a r  minimum 

and -7 t o  1 a t  s o l a r  maximum a r e  predicted by Lingenfel ter ,  

whereas Hess e t  a l .  (1961) have used the l a t i t u d e  dependence 

of t he  equi l ibr ium neutron f lux i n  the atmosphere measured 

by Simpson (1951) giving a l a t i t u d e  v a r i a t i o n  of 4.5 t o  1. 

Newkirk has calculated the neutron f l u  a t  5 7 O  N using 

I n  Table I the data as presented give a l l  the  cur ren t  

r e s u l t s  available. Columns 2, 3, 4 and 5 give,  respec t ive ly ,  

the  time of the measurement, the geomagnetic l a t i t u d e ,  a l t i -  

tude and f l u x  measured, while column 6 gives  5he f l u x  cor- 

rected t o  300 km using a RW3** a l t i t u d e  v a r i a t i o n  t o  f a c i l i -  

t a te  comparison of  r e s u l t s .  

r e s u l t s  on the basis of  whether an experimental o r  calculated 

Columns 7 and 8 separate the 
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cor rec t ion  has been appl ied to the  l i s t e d  measurement t o  

account f o r  l o c a l  production and/or charged p a r t i c l e  

response. The H o r  L i n  parentheses ind ica t e s  whether the  

spectrum has been calculated according t o  the theory of Hess 

o r  Lingenfel ter .  Columns 9 and 10 l i s t  the calculated f l u x  

a t  300 km f o r  the two spectra .  

It is a t  once apparent t h a t  the r e s u l t s  separate them- 

se lves  i n t o  groups. The measurements of Albert ,  Gi lber t  

and Hess (1962) and Williams and Bbstrom (1964)fall con- 

s i s t e n t l y  above the ca lcu la t ions  of Lingenfel ter .  However, 

Albert  ek . a l .  measure a l a t i t u d e  e f f e c t  of about 10 t o  1, 

very c lose  t o  that calculated by Lingenfel ter .  The r e s u l t s  

of Bame e t  a l .  agree well  with the ca lcu la t ions  of Lingen- 

fe l ter ,  and the present  results agree w e l l  a t  low l a t i t u d e s .  

A t  h igh l a t i t u d e s ,  Trainor and Lockwood measured a f l u x  

about 1/3 that calculated by Lingenfel ter ,  s ince  they f ind 

a l a t i t u d e  v a r i a t i o n  of 04 t o  1. If  these r e s u l t s  are  com- 

pared wi th  the measurements of Bame e t  a l .  a t  middle l a t i -  

tudes,  it is  seen that there  is good agreement between the 

t o t a l  response of the de tec tors .  The experimental and 

calculated cor rec t ions  f o r  l oca l  neutron production i n  

Trainor  and Lockwood's experiment are much larger than 

those estimated by Bame e t  a l .  (1963). 

Summarizing, it appears tha t  while the re  i s  some 

agreement between measurements and ca lcu la t ions ,  there 

s t i l l  e x i s t  l a rge  unce r t a in t i e s  i n  the neutron albedo f l u x  

and the l a t i t u d e  dependence of t h i s  f lux .  The need f o r  

f u r t h e r  measurements is apparent,  but it is  necessary that 
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these measurements should provide f o r  experimental separat ion 

of the albedo f lux  from that produced loca l ly  i n  the  de t ec to r  

and the vehicle  by cosmic-ray protons.  Obviously more d i r e c t  

methods f o r  determining the energy spectrum of the neutrons 

should be made. 

111. Requirements Imposed on t h e  Space Neutron Monitor 

To measure e f f ec t ive ly  the neutron f l u x  above the  

atmosphere the neutron space monitor must have the following 

c h a r a c t e r i s t i c s  : 

1. response t o  neutro s i n  the energy range of 
.01 < En < 14 x 108 ev;* 

*A recent  review (Hess, 1963) on the possible  sources f o r  the 
radiation trapped i n  the  inner r a d i a t i o n  b e l t  concludes that 
protons with energies  g rea t e r  than 5 Mev are due t o  albedo 
neutrons from both g a l a c t i c  and s o l a r  cosmic rays,  and possi-  
b ly  a source f o r  those e lec t rons  with energies  less than 780 
Kev. Even though these conclusions may be subjec t  t o  debate, 
they do suggest some desirable proper t ies  f o r  the monitor w e  
are developing. Unfortunately, it was not  f e a s i b l e  t o  requi re  
the  monitor t o  have a s ign i f i can t  response above En = 20 MeV. 
Thus, w e  would not be measuring d i r e c t l y  those neutrons w i t h  
En > 30 M e V  which decay i n t o  energe t ic  protons i n  the  inne r  
b e l t  (EP > 30 Mev). 
spectrum produced by g a l a c t i c  cosmic rays is  due t o  the 
slowing down and d i f fus ion  i n  the atmosphere of the  evapora- 
t i o n  neutrons (-4 M e V )  and the knock-on neutron sources.  
Therefore, the lower energy neutrons are gene t i ca l ly  re- 
lated t o  the higher energy neutrons. We should also note  
that changes i n  the i n t e n s i t y  of the g a l a c t i c  cosmic rays 
should be r e f l ec t ed  i n  changes i n  the i n t e n s i t y  of the albedo 
neutrons observed wi th  the  proposed monitor. On the  o ther  
hand, we would expect albedo neutrons produced by s o l a r  pro- 
tons t o  arise predominantly from an evaporat ion source 
because of the much s t eepe r  energy spectrum of  the  s o l a r  
protons.  The energy response of t he  proposed de tec to r  i s  
therefore  well su i ted  f o r  monitoring these neutrons.  

On the other hand, the neutron albedo 
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s i g n i f i c a n t  e f f ic iency  over the above energy range, 
e spec ia l ly  a t  high energies, w i th  a minimum weight 
and volume; 

neg l ig ib l e  response t o  gamma rays and charged 
p a r t  i c  les  ; 

good voltage pulse-height d i s t r i b u t i o n ,  with 8 
c l e a r  separa t ion  of neutron and charged particle 
pulses;  

minimum quant i ty  of high atomic number material 
i n  the d e t e c t o r  i t se l f ;  

re l iable  and simple associated e l ec t ron ic s ;  

shock r e s i s t a n t  t o  approximately 50 g;  

temperature s t a b i l i t y  of counting rate over the 
range from -300 t o  700 C. 

The types of de t ec to r s  considered f o r  incorporat ion 

the space monitor were: 

a BF counter surrounded by 1/2 inch p a r a f f i n  

a high pressure He3 de tec tor  surrounded by approxi- 
mately 1 inch of polyethylene; 

a L i I  (Eu) s c i n t i l l a t o r  mounted on a photomult ipl ier  
surrounded by a 1 inch polyethylene moderator; 

a Li6 (ZnS) s c i n t i l l a t o r  (Nuclear Enterprise Model 
421), surrounded by a 1 inch polyethylene moderator. 

moni 2 or;  

The choice of the best neutron d e t e c t o r  f o r  incorpora- 

t i o n  i n  t h e  neutron space monitor was based upon the  following 

tests: 

1. a c a r e f u l  eva lua t ion  of the pulse-height d i s t r i b u t i o n  

2. the d iscr imina t ion  I n  the d e t e c t o r  aga ins t  charged 

of the neutron counter; 

par t ic les  and gamma rays; 

3.  the  e f f i c i ency  ove a range of energ ies  from 
.01 < En < 10 x 10 
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A moderated neutron de tec tor  se lec ted  on t h i s  basis was then 

incorporated with the charged p a r t i c l e  counters t o  discr imin-  

a t e  aga ins t  production i n  the monitor. The ef fec t iveness  of 

the  over -a l l  de t ec to r  was evaluated f o r  r e Jec t ion  of charged 

p a r t i c l e  events .  A prototype u n i t  of t h i s  system was designed 

and ca re fu l ly  tested. 

IV .  Comparison of Detector Charac te r i s t ics  

The comparison of the e f f i c i e n c i e s  of the B q  and 
H e 3  gaseous counters  and the L i  6 I s c i n t i l l a t i o n  de tec to r  

f o r  neutrons depends upon the r eac t ion  cross-sect ion.  I n  

Fig .  1 the  reac t ion  cross-sect ion f o r  He3, BIO, and L i I ,  is 

shown as a funct ion of neutron energy. The p robab i l i t y  of 

i n t e r a c t i o n  i n  a de tec tor ,  assuming a d i r e c t i o n a l  f l ux  per- 

pendicular  t o  the  long a x i s  of the  counter is given by 

where p and po a r e  the pressure i n  the  de t ec to r  and pressure 

a t  0' C, S i s  the cross-sect ional  area of the counter i n  cm2, 

L i s  Loschrnidt's number (=2.6 x 1019 cm-3 a t  STP). rR i s  the 

r eac t ion  c ross  sec t ion  i n  cm2, t equals  the  counter  thic 'mess 

i n  cm. From Fig. 1 it is  evident t h a t  with equal numbers of 

atoms i n  these  th ree  possible  de t ec to r s ,  the  e f f i c i ency  de- 

creases  rap id ly  wi th  increasing neutron energy. Therefore, 

to extend the range of the detec tor  t o  higher energy, i t  i s  

necessary t o  surround it  w i t h  a hydrogenous moderator t o  slow 

down the high energy neutrons. It is  a l s o  i n t e r e s t i n g  t o  note 
that  the reac t ion  cross-sect ion f o r  He 3 and B1* is almost a 
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monotonic funct ion of energy, whereas f o r  L i 6  there is 

a d i s t i n c t  resonance a t  approximately 500 Kev. 

To compare these de tec to r s  we have s tudied t h e i r  

vol tage pulse  height  d i s t r i b u t i o n s  with a RCL 256-channel 

pulse  height analyzer  and the r e s u l t i n g  pulse  height d i s -  

t r i b u t i o n s  are shown in F i g s .  2-5. The BF3 propor t iona l  

counter was 2" i n  a c t i v e  length, with 1" a c t i v e  diameter 

f i l l e d  t o  a pressure of 60 crn. Hg., and was surrounded 

by a l /zy para f f in  moderator. This d e t e c t o r  was chosen 

because it was s i m i l a r  t o  one previously flown i n  neu- 

t r o n  experiments (Trainor and Lockwood, 1963). Two 
d i f f e r e n t  H e  3 d e t e c t o r s  were used: one 4" I n  a c t i v e  

length, with 1" diameter, f i l l e d  t o  10 atmospheres 

pressure and surrounded by a 1" polyethylene moderator. 

The second He3 d e t e c t o r  was 6" In a c t i v e  length,  with 

1" diameter, f i l l e d  t o  4 atmospheres of pressure and 

surrounded by a 1/2" polyethylene moderator. The LiI 

(Eu) s c i n t i l l a t o r  was 1" i n  diameter, 4 mm th i ck ,  and 

was mounted on a 6199 photomultiplier,  and encased i n  

a 1" polyethylene moderator. 

In  the pulse he ight  d i s t r i b u t i o n  curve f o r  the 

gaseous BF counter (Fig. 2 ) ,  run with a source of ther- 

mal neutrons, i t  is quite evident tha t  the noise  and 
3 

gamma ray pulses  l i e  below 2 m i l l i v o l t s  and that there 

i s  a broad d i s t r i b u t i o n  of  pulses  r e su l t i ng  from the  

neutron r eac t ion  products: alpha p a r t i c l e s  and Ll r e c o i l  

nuc le i .  The exposure of the d e t e c t o r  t o  an in t ense  flux 
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of gamma rays does not a f f e c t  the  integrated neutron counting 

r a t e  provided t h a t  the discr iminator  l eve l  is  set a s  ind i -  

cated.  

counters ,  shown i n  Figs. 3 and 4J  were a l s o  obtained with a 

thermal neutron f lux .  The pulses from neutron reac t ion  pro- 

duc ts  producing the  ionizing events a r e  much g r e a t e r  than 

gamma-ray pulses ,  although the separat ion,  o r  val ley,  between 

the noise  and gamma pulses  and the  neutron events i s  not as 

sharp as  with the BF3 counter. 

l e v e l s  indicated i n  either Fig. 3 o r  Fig. 4, the cont r ibu t ion  

f o r  the  L i I  s c i n t i l l a t o r  shown i n  Fig. 5 was obtained f o r  a 

thermal f l u x  of neutrons. The pulse  height  d i s t r i b u t i o n  shown 

c l e a r l y  ind ica t e s  poor reso lu t ion  of the neutron- and gamma- 

induced events.  Therefore, some scheme must  be used t o  reduce 

the  response t o  gamma rays.  Whether t h i s  can be done by pulse  
6 shaping techniques on the L i  I s c i n t i l l a t o r  is  unknown a t  t h i s  

time. Phoswiching techniques a r e  q u i t e  r e l i a b l e ,  but they do 

complicate t he  e l ec t ron ic s  f o r  a de t ec to r .  In  discussing the  

e f f i c i ency  of t h i s  de tec tor ,  we must replace Loschmidt''s 

number L, appearing i n  Eqn. 1, with No (?/A, where No is  

Avagadrors number, p = the d e n s i t y  of the s c i n t i l l a t o r  mater ia l ,  

and A = the atomic number. The d e t a i l s  on the  L I I  neutron 

de tec to r ,  including the phoswiching c i r c u i t s  are  presented i n  

Appendix B. 

The pulse  height  d i s t r i b u t i o n s  f o r  the  He3 proport ional  

However, with discr iminat ion 

The pulse  height  d i s t r i b u t i o n  of a L i6  (ZnS) Model 

NE 421 neutron s c i n t i l l a t i o n  de tec tor  was determined as  shown 

i n  Fig. 6 .  This  d e t e c t o r  is similar t o  a L i I  de t ec to r  except 
t h a t  the L i  6 wi th  96s enrichment is d ispersed  i n  a zinc 

~~~ ~ ~ ~ 
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sulphide matr ix  wi th  s i l v e r  as the a c t i v a t o r .  Relat ive t o  

the L i I  s c i n t i l l a t o r ,  the  NE 421 is more e f f i c i e n t  f o r  neu- 

t rons  because the  cross-sect ion of ZnS i s  higher  f o r  the 

capture  of the nuclear  reac t ion  prodQcts. The ZnS, however, 

has poor l i g h t  t r ansn i s s iv i ty ,  thus l i m i t i n g  the thickness  

of the s c i n t i l l a t o r .  The neutron energy range and response 

are thus somewhat l i m i t e d .  The NE 421, however, has a very 

low gamma-ray response because the energy l o s t  by the gamma 

r a y s  i s  considerably less than i n  a L i  6 I c r y s t a l .  

height  d i s t r i b u t i o n ,  a s  shown 'in Fig. 6 , is  very poor. The 

pulses  from the neutrons and gama rays can not  be e a s i l y  

separated unless  the discr iminat ion l e v e l  i s  set very care-  

f u l l y  f o r  counting. 

d i s t r i b u t i o n  i s  a steep funct ion of pu lse  height  voltage,  

the s t a b i l i t y  required I n  the amplifier and d iscr imina t ing  

c i r c u i t  f o r  a constant  in tegra ted  neutron counting ra te  i s  

much greater than  f o r  any of the de tec to r s  discussed so f a r .  

The poor pulse  height d i s t r i b u t i o n  with low o v e r a l l  e f f i -  

ciency l e d  u s  to r e J e c t  th i s  type of d e t e c t o r  f o r  the space 

monitor. 

The pulse 

Since the  d i f f e r e n t i a l  pu lse  he ight  

V. Discrimination Against Neutron Production i n  the Monitor 

Neutrons w i l l  be produced i n  the d e t e c t o r  and su r -  

rounding moderator by protons and neutrons with energ ies  

greater than about 50 Mev (Trainor, 1964). From the neutron 

albedo energy spectrum of Lingenfel ter  (1963) about 5$ of 

the neutrons leaking from the atmosphere have energ ies  

g r e a t e r  than 3 M e V ,  of which only a small f r a c t i o n  of t h i s  

energy w i l l  produce react ions.  The i n t e n s i t y  of' protons,  
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* however, w i t h  energies  of g rea t e r  than 1 Bev i s  about 20 

times the i n t e n s i t y  of neutrons wi th  energies  g r e a t e r  than 

10 M e V .  Hence, the l a r g e r  source of production is from 

ene rge t i c  protons through nuclear s t a r  reac t ions .  The re- 

s u l t i n g  cascade and evaporation neutrons w i l l  have a wide  

d i s t r i b u t i o n  i n  energy. Some of the fas t  cascade p a r t i c l e s  

may induce secondary react ions with f u r t h e r  production of 

evaporation neutrons.  To d i s c r i n i m t e  a g a i n s t  these pro- 

duc t ion  neutrons i n  the monitor, the neutron de tec to r ,  o r  

monitor, is  surrounded by a charged p a r t i c l e  de t ec to r .  

Whenever t he  d e t e c t o r  responds t o  a charged p a r t i c l e ,  the 

r e s u l t i n g  voltage pulse  blanks o f f  the neutron counting 

channel. T h i s  blanking time is  se t  t o  be seve ra l  l i f e  

times of the neutrons in the  moderator t o  e l imina te  prac- 

t i c a l l y  a l l  the neutrons produced by high energy p a r t i c l e s .  

There are seve ra l  methods which may be used t o  su r -  

round the neutron counter with a charged p a r t i c l e  de t ec to r  

system. Gaseous proportional counters can be placed e i the r  

between the moderator and the neutron de tec to r ,  o r  around 

the outs ide  of the moderator. These propor t iona l  counters 

may be operated e i ther  i n  the a d d i t i v e  mode o r  the coin- 

cidence mode. It i s  more des i rab le  to have the charged par- 

t i c l e  de t ec to r s  ou ts ide  the moderator. I n  previous de t ec to r s  

used we placed the charged p a r t i c l e  d e t e c t o r s  i n s i d e  the 

moderator. There a r e  two bad f e a t u r e s  i n  such a scheme: 

(1) neutrons w i l l  be counted which a r e  unaccompanied by 

charged p a r t i c l e s ,  these events occurr ing as  a r e s u l t  of 

high energy protons incident  on the  moderator. (2)  The 
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40 t o  80 MeV,  because the charged p a r t i c l e s  must pene t ra te  

through the moderator. The arrangement with the charged p a r t i -  

c l e  counters ou ts ide  the moderator is much better,  but does 

r equ i r e  a l a r g e  number of charged p a r t i c l e  de t ec to r s ,  w i th  the 

p o s s i b i l i t y ,  therefore ,  of having the counting system s a t u r a t e .  

I n  another  scheme to d e t e c t  the charged p a r t i c l e s ,  a moderator 

which is also a s c i n t i l l a t o r  i s  used. With the photomult ipl ier  

located a t  one end of the de tec tor ,  the  system may be adjusted 

t o  r e j e c t  charged p a r t i c l e  events through a ga t ing  s igna l .  T h i s  

method is much more complicated than the charged p a r t i c l e  

counter system, but i s  q u i t e  feasible.  

With the L i61  s c i n t i l l a t o r  genera l ly  a hydrogenous 

s c i n t i l l a t o r  i s  used as a moderator t o  surround the neutron 

d e t e c t o r .  Then standard pulse shaping techniques can be em- 

ployed. The 

r e s u l t s  of a similar system f o r  fas t  neutron detectPon w i l l  be 

discussed i n  Sect ion X. For examples of such de tec to r s ,  see 

Haymes (1964) and Mendell and Korff (1963). 

One type is described i n  d e t a i l  i n  Appendix B. 

Comparison of' the Ef f i c i enc ie s  of t h e  N2utron Monitors 

The neutron space monitors were ca l ib ra t ed  by exposing 

them t o  known neutron f luxes  i n  t h e  energy range .01 < En 

< 14 x 10' ev. 

t he  Universi ty  of New Hampshire provided a source of near ly  

monoenergetic neutrons a t  14, 5, 3, and 0.1 Mev by using 

t r i t i u m ,  copper, deuterium, and carbon t a r g e t s .  The absa lu t e  

f l u x  was determined by i r r a d i a t i n g  f o i l s  and comparing the  

counting ra tes  of a standard long counter (Hanson and Mc- 

Kibben, 1947; and Marion and Fowler, 1960). I n  add i t ion ,  

calibrated Ra-Be and Pu-Be sources were used t o  provide 

The 400 Kev Van de Graaff a c c e l e r a t o r  a t  



. neutrons with mean energies  of 4 .1  Mev and 3.5 MeV,  respec- 

t i v e l y .  Thermal energy ca l ib ra t ions  were made a t  the  ther-  

mal neutron f a c i l i t i e s  of the Portsmouth Naval Shipyard and 

with the carge t  of the Van de Graaff a c c e l e r a t o r  surrounded 

by a large pa ra f f in  moderator. The p r i n c i p l e  d i f f i c u l t y  i n  

c a l i b r a t i n g  monitors f o r  fas t  neutrons with the Van d e  Graaff 

a c c e l e r a t o r  arises from the back s c a t t e r i n &  of z e u t r m s  f ~ o r n  

t h e  wal l s  surrounding the t a rge t .  These neutrons w i l l  have 

much lower energies ,  and s ince a l l  de t ec to r s  being considered 

have a n  e f f ic iency  inverse ly  deperrdent upon energy, the 

s c a t t e r i n g  e f f e c t  may mask the response t o  fast  neutrons.  

The experimental set-up used  f o r  c a l i b r a t i n g  the monitors 

i s  shown i n  Fig. 7 with the Van d e  Graaff cperated to pro- 

duce a continuous f l u x  o r  pulsed beam of neutrons.  

I n  e a r l i e r  a t tempts  t o  c a l i b r a t e  the neutron monitors, 

the Van d e  Graaff had been pulsed and both the long counter 

and neutron monitor pulsed i n  synchronization wi th  the acce l -  

e ra tor  pulse.  This  method reduces the  e f f e c t  of s c a t t e r i n g  

s i n c e  the time between pulses was the  o r d e r  of mil l iseconds,  

and i n  t h i s  t i m e  the neutron f l u x  i n  the room would decay 

t o  e s s e n t i a l l y  zero. However, a l a rge  co r rec t ion  m u s t  be 

made fo i a  the f i n i t e  r ise  and decay of t h e  neutron gas i n  

the moderator of t he  monitor and the long counter used f o r  

c a l i b r a t i o n ,  and any small leakage of deuterons down the 

a c c e l e r a t i n g  column of the  V m  d e  Graaff i n  between pulses  

would produce large e r r o r s  i n  the  measured ef  f l c i enc ie s .  

The leakage problem was a major one because the  Van d e  Graaff 

could not  be made t o  opera te  properly a t  the necessary low 
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beam cur ren t s .  Since the  cor rec t ion  f o r  t he  f i n i t e  r ise 

and decay of the neutrons i n  the moderator was very la rge ,  

i t  was decided t o  d i s c a r d  t h i s  method. 

To reduce the  s c a t t e r i n g  of neutrons by the walls 

of the room, the f a s t  neutron beam was collimated by means 

of pa ra f f in  and the energy degraded neutron f l u x  was then 

p a r t i a l l y  absorbed by cadmium and bora1 plate  (Fig. 8). 

A check can be made on the sca t t e red  i n t e n s i t y  by the 

1/R2 response with d e t e c t o r s  o r  f o i l s  which respond t o  the 

f a s t  f l u x  only and t o  the  total f lux .  It was found that 

with the collimated beam the response was near ly  1/R2 i n  

the region where the  monitor was located f o r  c a l i b r a t i o n  

purposes. The arrangement of the col l imator  is  shown i n  

Fig. 8 and e f f e c t  upon the  neutron i s  p lo t t ed  i n  Fig. 9, 

where the r e l a t i v e  response i s  p lo t t ed  aga ins t  the angle  

e, w i t h  the geometrical shadow of 

cated by the v e r t i c a l  dashed l i n e .  

us t o  c o r r e c t  f o r  the background of 

a t  t h e  monitor. The e f f i c i ency  can 

the co l l imator  i nd i -  

This response enabled 

the  sca t t e red  neutrons 

then be redefined by 

As mentioned previously,  w e  can determine the fas t  f l u x  

from the  induced a c t i v i t y  i n  var ious f o i l s  having the 

appropr ia te  neutron energy thresholds .  A detai led discus-  

s i o n  of such methods can be found i n  Allen (1960) and Marion 

and Fowler (1960). 

The most r e l i a b l e  method for c a l i b r a t i n g  the Van d e  

Graaff neutron f l u x  I s  t o  count the assoc ia ted  p a r t i c l e s .  
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This technique enables one t o  determine t h e  f l u x  t o  approx- 

imately 25 percent.  T h i s  method is most re l iable  with the 

t r i t i u m  t a r g e t  s ince  the  associated r e c o i l  alpha p a r t i c l e  

has a n  energy of about 3 MeV. The neutron f l u x  c a l i b r a t i o n  

by t h i s  method agreed t o  within 15 percent of the r e s u l t s  

using the induced a c t i v i t y  o f  f o i l s .  The experimental 

set-up f o r  the associated par t i c l e  assembly i s  shown i n  

Fig. 10. 

To c a l i b r a t e  wi th  Ra-Be and Pu-Be sources i t  must 

be noted that these are not  monoenergetic sources of neu- 

t rons  and the known energy spec t ra  (Fowler, 1960) must  be 

folded i n t o  the estimated e f f i c i ency  of the de tec tor .  If 

the  response of the monitor i s  given by S (E)  counts/neutron/ 

cm , and the number of neutrons emi t t ed  from the source with 2 

a given energy E i s  defined a s  N(E),  then the mean energy 

f o r  the source as seen by the  monitor w i l l  be given by 

- f E  N(E)  S(E)dE 
E =  

$ N E )  ( E m  
The i n t e g r a l  can be replaced by a summation, i n  which 

N(E) and S(E) are  considered e s s e n t i a l l y  constant  over small  

energy i n t e r v a l s .  Consequently, a r ad ioac t ive  source can 

only be used as a check on the  absolute c a l i b r a t i o n  of the 

monitor, s ince  the r e l a t i v e  response of the  monitor must be 

A w n  approximately to ca lcu la t e  t h e  mean energy of t h i s  

source. However, the e f f i c i ency  of the  neutron monitor can 

be determined approximately by considering the  measured 

e f f i c i ency  to &orrespon'd,: eo ' the  a c t u a l  rnean'enerm oT*.the 

neutrons from the rad ioac t ive  source. 



In addition, the neutron detectors were calibrated in 

an intense flux of low energy gamma rays and the results of 

these calibrations are summarized in Table 11. 

It can be seen from Table I1 that the He3 neutron 

monitor has the highest neutron efficiency. 

is larger than the LiI scintillator. While the latter is  

a somewhat smaller detector, the high gamma response of the 

scintillator suggests that i t  would not be as good for  space 

measurements. 

response, has an almost correspondingly lower neutron effi- 

ciency. Increasing the size of the BF detector would in- 

crease its efficiency, but unless the gas pressure in the 

counter were greater than an atmosphere, it could not com- 

pare with the He3 detector. 

the He3 detector is i t s  very low operating voltage f o r  corres- 

pondingly high efficiencies. 

tribution of the He3 neutron detector is good enough for 

circuits used. 

gible temperature coefficient from about -30° C t o  -1-50' .C. 

Therefore, the only tenperature stability problem for this 

type of detector is in the temperature compensation of the 

electronics, which is easily achieved. 

seems the best choice in view of' size and weight considera- 

tions. Scintillator-type monitors must be considerably 

larger because at least one or two photomultipliers are 

required. The only major disadvantage of the He3 monitor 

is its lack of a 47c solid angle to detect charged part i -  

cles for discrimination against local production of neutrons. 

Its efficiency 

The BF3 monitor, with the lowest gamma-ray 

3 

A very distinct advantage of 

The pulse height voltage dis- 

We found that the He3 detector had a negli- 

The He3 monitor also 
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However, 

p a r t  i c 1 es  
5 percent 

he f r a c t i o n  of s o l i d  angle i n  which charged 

may e n t e r  without being detected is  about 
of the t o t a l  so l id  angle .  Consequently, t h i s  

i s  not  a ser ious  disadvantage, and can be neglected i n  

an i s o t r o p i c  f l u x  of p a r t i c l e s .  I n  conclusion, there- 

fore, these tests ind ica t e  that He3 neutron monitor i s  

the best choice f o r  a space neutron monitor i n  terms 

of the requirements proposed a t  the ou t se t  of t h i s  s tudy.  

VII, Design of a Prototype Moni tor  

On the basis of these conclusions we have designed 

a prototype, the tube module f o r  which i s  shown i n  Fig. 

11. 

length and 1" a c t i v e  diameter, f i l l e d  t o  a pressure of 

10 atm. Although the  design wi th  the  charged p a r t i c l e  

proport ional  counters on the outs ide  of the monitor is 

more desirable,the proport lonal  counters were located 

as shown i n  Fig .  11, because we d i d  no$ have ava i l ab le  

s u f f i c i e n t  proport ional  counters for the  cjutside wi th  

a moderator of the  proper geometrical shape. 

ekhylene moderator was approximately 1/2" i n  diameter,  

which is less than the optimum diameter o f  l", which 

reduced the  e f f ic iency  about 20$, a s  indicated i n  Table 

11. The tube module i s  separate  from the e l ec t ron ic s  

and is capable of being operated a t  d i s tances  of severa l  

f e e t  from the  main e lec t ronics  module. The schematic 

diagram of the e l ec t ron ic s  is indicated i n  Fig. 12, and 

de ta i l ed  c i r c u i t  diagrams are  presented i n  Appendix A .  

On the center  i s  located the  He3 counter, 4" a c t i v e  

The poly- 
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In Figs.  13 and 14 are shown two views of the detector and 

the associated electronics. The calibration curve for the 

prototype i s  shown in Fig. 15. Since the He3 neutron mon- 

itor has cylindrical geometry, the efficiency as a func- 

tion of angle has been determined using the scheme fndi- 

cated in Fig. 16, and the results of this calibration 

are shown in Fig. 17. We see that the efficiency drops 

by a factor of approximately 2.50 in a direction along 
the axis of the counter where there is no monitor. The 
region between thermal energies and 10 6 electron volts 

was sketched in, using the known response of a neutron 

detector with approximately 1" polyethylene. This curve 

will be treated in more d e t a i l  when more satisfactory 

neutron fluxes (Enw 100 Kev) have been obtained from 

carbon targets. In Table I11 are listed the specifications 

for the prototype space neutron monitor. The mean effi- 

ciency for the prototype unit for the Lingenfelter neutron 

flux (1963) is 5.88 -1 1.18 cts/neutron/cm*. 

VIII. Directional Neutron Detectors f o r  Space Measurements 

Preliminary investigations have been made of a type 

of directional neutron detector for neutron measurements 

in space, particularly solar neutrons. The results of 

the first series of experiments with this detector have 

been presented in Progress Report No. 1 (NASr-211, Dr. 

E. L. Chupp, Principal Investigator), and only a brief 

summary of results here. Extensive investigations are 

being conducted by Dr. Chupp to increase the size and 

efficiency t o  obtain sufficiently high counting rates. 



. 

Table 111. Speci f ica t ions  for Space Neutron Monitor Prototype 

Dimensions: 

1) Tube Module - 3.5  i n .  diameter; 10.5 in .  long 

2 )  Elec t ronics  Module -. 10.5 x 2.5 x 5.5 inches 

Counters: 

1) He3 tube - high voltage = 1575 V; d i s c .  = 1 rnv. 

2 )  Prop. Bank A - high vol tage = 2050 V; d i sc .  = 3 mv. 

3) Prop. Bank B - high vol tage = 2050 V; d i s c .  = 3 mv. 

Energy Range: 

1) 

2 )  

3 )  
Background: 0.6 cts/min i n  pa ra f f in  p i l e  with Cd around 

tube module 

Power: 1.5 watts 

Weight: 10 l b s  

Temperature Test : 

6 Neutrons = 0.01 < E, < 14 x 10 

Protons = approx. > 40 Mev and > 80 Mev 

Electrons = approx. > 1 Mev 

ev 

(-30° C t o  70' C )  1) Amplifier ga in  constant 5% 

2 )  High voltage constant 0.55 

Shock T e s t :  10 g ' s  s i n e  wave 
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To consider the effectiveness of this type of directional 

detector two small pro'cotyaes similar to the design of 

Stetson and Berko (1959) were obtained from Nuclear Enter- 

prise. These scintillators were in the form of r i g h t  cir- 

cular cylinders with a diameter of 3.8 em. and a height or" 

2 cm. The one scintillator, designated as the "rod" 

scintillator, consisted of 97 plastic scintillating rods 

held in a parallel array by a non-scintillating plastic 

matrix. The other scintillator, designated as the slab 

type, consisted of 15 slabs also held in a parallel array 
by non-scintillating plastic. In Table IV are indicated 

the dimensions of the two detectors. 

Table IV. Dimensions of Directional Neutron Detectors Tested 

Slab - Rod 5Pe - 
d (cm) 10-1 5 10-3 

s (cm) 3 x 10-1 4 x 10-1 

A (cm2) 0.75 1.7 x 

d = diameter of rods or thickness of slabs. 

S = distance to nearest rod of? slab. 

A = total cross-sectional area of detector. 

The results of tests with this type of directional 

detector are summarized in Table V. These measurements 

were made with 14 and 3 Mev neutrons produced in the Van 

de Graaff accelerator. It is clear that for neutrons of 

14 Mev both the rod and scintillator detectors are highly 

directional. For 3 MeV neut rons ,  however, only the slab 

detector has a significant directional response. In all 
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. cases  when the  counting rate i s  p lo t ted  aga ins t  the angle 

8 between the a x i s  of the rod and Incident  neutron beam, 

a d i s t r i b u t i o n  i s  obtained which is  almost Gaussian, the 

maximum occurring a t  8 = 0 and the minimum a t  8 = go0. 

The half-width and the  r a t i o  o f  the counting rate a t  Oo 

t o  the counting rate a t  90' depend d i r e c t l y  upon the pulse  

d iscr imina t ing  leve l .  It would seem that w i t h  the  discrim- 

i n a t i o n  l e v e l  a t  two-thirds the maximum pulse  height  the 

ra t io  of the counting r a t e  f o r  14 M e V  neutrons a t  Oo t o  

that  a t  90' f o r  both types of material i s  qu i t e  appreciable .  

These preliminary results ind ica t e  the feas ib i l i ty  

of t ry ing  t o  make a much la rger  de t ec to r  with s l i g h t l y  

d i f f e r e n t  physical  dimensions, a program t o  be car r ied  

out  by D r .  E. Lo Chupp. One fea ture  t o  be considered i n  

such a de tec to r  i s  the r e j ec t ion  of charged p a r t i c l e  i n t e r -  

ac t ions .  The cosmic-ray f lux,  cons is t ing  pr imari ly  of pro- 

tons,  w i l l  produce recoi l ing  events. Therefore, th i s  

de t ec to r  must be surrounded by a t h i n  p l a s t i c  i n  which the 

charged p a r t i c l e s  w i l l  generate an  ant icoincidence gat ing 

signal t o  bias o f f  the neutron de tec tor .  

M. Fast Neutron Detector 
I We have constructed a fas t  neutron de tec to r  using 

a s t i l b e n e  s c i n t i l l a t o r  with the pulse  shape discr iminat ion 

c i r c u i t  of Daehnick and Sherr (1961). 

have been made on the de tec tor  t o  determine the r e j e c t i o n  

ra t io  f o r  gamma rays and t h e  energy reso lu t ion  f o r  neutrons. 

No attempt has been made y e t  t o  encase the s t i l b e n e  d e t e c t o r  

P r e l i m i n a r y  t e s t s  
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i n  a t h i n  p l a s t i c  s c i n t i l l a t o r  f o r  d i scr imina t ion  aga ins t  

charged p a r t i c l e  production. 

Typical pulse  height d i s t r i b u t i o n s  are  shown i n  

Figs. 18a and 18b. The dashed curve i n  Fig. 18a (X 30 s c a l e )  

is the pulse  height d i s t r i b u t i o n  without p.s.d.  f o r  neutrons 

from the DD r eac t ion  with 400 Kev deuterons with a n  in tense  

source (.u1 mc, Co60) of gamma rays present .  

curve i s  the pulse  he ight  d i s t r i b u t i o n  f o r  the neutrons only. 

The pulse  shape discriminated output under the  same condi t ions 

i s  shown i n  Fig. 18b. It i s  evident that the gamma pulse  

r e j e c t i o n  r a t i o  i s  very good, the measurements i nd ica t ing  

that it exceeds 3OO/ l .  

(1960) we can then deduce the neutron energy spectrum from 

the pulse  height d i s t r i b u t i o n  shown i n  Fig. 18b. 

The so l id  

By the method of Broek and Anderson 

Having acquired some experience with pulse  shaping 

c i r c u i t s  and the methods used t o  de r ive  a neutron energy 

spectrum from the proton r e c o i l  spectrum, we p lan  t o  inves- 

t i g a t e  o t h e r  types of r e c o i l  de t ec to r s  f o r  poss ib le  use t o  

measure the neutron energy spectrum near  the ea r th .  Any such 

de tec t ing  scheme must, of course, incorporate  a n  an t i co in -  

cidence arrangement f o r  charged p a r t i c l e  re  Section. 
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Appendix A 

Schematic Diagrams of 

Electronic  C i r c u i t s  for the 

Prototype Space Neutron Monitor 
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Appendix B 

L i I  Neut ron  Detector 

A neutron d e t e c t o r  constructed f o r  comparison w i t h  

the He3 and BF 
L i  6 I (Eu) s c i n t i l l a t o r  (Harshaw Chemical Corporation), 

encased i n  a p l a s t i c  s c i n t i l l a t o r ,  PI - Diphenylstilbene, 

manufactured by P i l o t  Chemicals, Inc. ,  and designated a s  

P i l o t  B. This d e t e c t o r  was developed following the sugges- 

t i o n  of E. L. Chupp, who di rec ted  R. L. Colburn i n  t h i s  i n -  

ves t iga t ion .  The phoswich assembly is shown i n  Fig. B-1. 
6 The Li I (Eu) c r y s t a l  i s  2.235 i n .  diameter and 2 m n .  t h i ck ,  

and enclosed i n  a metal housing on two s ides  with a g l a s s  

cover on the f r o n t  s i d e .  The P i l o t  B s c i n t i l l a t o r  was 

machined from s tock  and painted on a l l  ou ts ide  sur faces ,  

except the one coupled t o  the  photomult ipl ier ,  with a special  

r e f l e c t o r  pa in t  manufactured by Nuclear Enterpr i ses ,  L td .  A l l  

o p t i c a l  couplings were made with Dow Corning XC-2-0057. 

proport ional  counters consisted of a 3 

The P i l o t  B s c i n t i l l a t o r  s e rves  two purposes (see 

Sec t ion  V):  (1) f o r  d i scr imina t ion  aga ins t  neutron production 

i n  the d e t e c t o r  by charged p a r t i c l e s ,  and (2 )  a s  a moderator 

t o  slow down energe t ic  neutrons, thereby increas ing  the e f f i -  

ciency f o r  de t ec t ion  of higher energy neutrons. The charged 

p a r t i c l e  d iscr imina t ion  occurs s ince  the f a s t  pu lse  produced 

i n  the p l a s t i c  s c i n t i l l a t o r  by the  inc ident  charged p a r t i c l e  

is used t o  der ive  a gate pulse which tu rns  o f f  the  output of 

the neutron de tec t ion  channel. An obvious disadvantage i s  

that the r e c o i l  n u c l e i  f rom e l a s t i c  c o l l i s i o n s  i n  t h e  scfn-  

t i l l a tor -modera tor  w i l l  produce l i g h t  pu lses  of comparable 



I .  

. 
magnltude t o  those i n  L i  6 I. For neutron energies  below 10 

Mev t h i s  will not  be a problem, because the r e l a t i v e  l i g h t  

output pu lse  f o r  i d e n t i c a l  energy lo s ses  i n  the s c i n t i l l a -  

t o r s  is about twice as la rge  f o r  L i 6 1  (Eu) as it is for P i l o t  

B. I n  addi t ion ,  the r e s u l t i n g  capture  of slow neutrons by 

H ( ( " d  O,3b) produces a pulse of 2.19 MeV.  

could occasional ly  trigger the  gate c i r c u i t  f o r  charged par- 

t i c l e  discr iminat ion,  hence increasing the dead  time of the 

d e t e c t o r  a r r a y  , 

Such a pulse  

The response of the phoswich assembly t o  charged par- 

t i c l e s ,  gamma rays, and neutrons should be as follows: 

1. 

2. 

3. 

4. 

Low-energy charged particles should lo se  all their-. 
energy i n  the p l a s t i c  t o  produce a s i n g l e  f a s t  pulse. 
If the r e s u l t i n g  voltage pulse  is above the threshold 
of the pulse  shape discr iminator ,  a g a t e  pulse  w i l l  
be produced, For h igher  energy p a r t i c l e s ,  a b l e  t o  
pene t r a t e  both the p l a s t i c  and L i I  s c i n t i l l a t o r s ,  a 
composite pulse  w i l l  result .  Since t h i s  pulse  con- 
t a i n s  both a fast  and a slow component, a g a t e  pulse  
w i l l  a l s o  be produced, The exact  energy threshold 
f o r  charged p a r t i c l e  d e t e c t i o n  was not  determined. 

Thermal neutrons may be captured in t he  p l a s t i c  
s c i n t i l l a t o r ,  and the r e s u l t i n g  8 pulses  may be 
large enough t o  produce a spurious g a t e  s igna l .  
Only a very small f r a c t i o n  of the thermal neu- 
t rons  would be expected to  produce such gating 
s igna l s .  

F'ast neutrons w i l l  be sca t t e red  i n  the p l a s t i c  
s c i n t i l l a t o r ,  and a s e r i e s  of fast  pulses w i l l  
be produced by the r e c o i l  protons.  Such pulses ,  
e s p e c i a l l y  where the  f irst  r e c o i l  proton pulse  
i s  l a rge ,  may r e s u l t  i n  se l f -ga t ing ,  depending 
upon t h e  threshold s e t t i n g .  The response of the 
phoswich assembly t o  such events  must be c a r e f u l l y  
checked. 

Even though the P l a s t i c  B and t h i n  L i61  s c i n t i l l a -  
t o r  have only a low ef f ic iency  f o r  gamma rays,  
some d i f f i c u l t i e s  wi th  gamma rays may be en- 
countered i n  the laboratory because most neutron 
sources  have l a rge  gamma f luxes  and some gamma 
r a d i o a c t i v i t y  is always produced with the acce l -  
era t or. 



. The pulse  shape discr iminator ,  the schematic diagram 

f o r  which is shown i n  Fig. B-2, i s  based upon t h e  design of 

Peterson and Nitardy (1961) f o r  use with a NaI-plast ic  

phoswich. I n  the experimental tests performed, a g a t e  

generator  was constructed t o  provide a pulse t o  gate the 

pulse  height  analyser ,  a type RCL-256. 

Four d i f f e r e n t  experiments were made on the phoswich 

assembly: F i r s t ,  the optimum values  were determined f o r  the 

parameters C 1  and C3 i n  the pulse  shape discr iminat ion c i r -  

c u i t .  Second, the response of  the  P i l o t  B s c i n t i l l a t o r  t o  

var ious energy neutrons was evaluated. Third,  the response 

of' the Li61 s c i n t i l l a t o r  was s i m i l a r l y  determined. 

the complete phoswich assembly was exposed t o  known f luxes  

of d i f f e r e n t  energy neutrons. 

Fourth, 

The experimental set-up t o  determine the response 

c h a r a c t e r i s t i c s  of the  s c i n t i l l a t o r s  t o  neutrons was essen- 

t i a l l y  the same as used f o r  the e f f i c i ency  measurements on 

the space neutron monitor shown i n  F i g s .  7 and 8. I n  a l l  

cases  the optimum value of C3 = 400 pf'was used and the  

high vol tage on the  photomult ipl ier  s e t  a t  l e s s  than 1150 

v o l t s  t o  avoid the p o s s i b i l i t y  tha t  g a t e  pulses  w i l l  be 

generated i n  the pulse  shape d iscr imina tor  f o r  slow rise 

t i m e  input  pulses .  

I n  Figs. B-3 and B-4 a re  displayed the  gated and un- 

gated spec t ra  from the P i l o t  B, the  L i I  and the phoswich 

assembly. It i s  evident  that the phoswich assembly operates  

s a t i s f a c t o r i l y  f o r  3 Mev neutrons because the  ga t ing  removes 

the pulses  i n  the range of channels 80-150. These pulses  



correspond t o  proton r e c o i l  below the  threshold f o r  gener- 

ating a gating pulse .  The s l igh t  s h i f t  i n  the  peak occurr ing 

a t  about channel 180-200 i n  the pulse  height  d i s t r i b u t i o n s  i n  

the L i61  and phoswich assembly i s  due  t o  d i f fe rences  i n  the 

o p t i c a l  path i n  the  two cases. 

d i s t r i b u t i o n  was obtained f o r  5 Mev neutrons.  However, w i t h  

14 MeV neutrons t h e  pulse  height  d i s t r i b u t i o n  i s  qu i t e  d i f -  

f e r en t ,  as can be seen i n  Figs. B-5 and B-6. 

assembly does not  operate  properly here  because, first, the 

fas t  neutrons produce r e c o i l  nuc le i  i n  the p l a s t i c ,  which i n  

t u r n  generate  l i g h t  pulses as l a rge  as from the Li61, and 

second, the  pulse  shape discr iminator  i s  saturatang,  i .e. ,  

f o r  s u f f i c i e n t l y  large pulses  from the  p l a s t i c  no ga te  pulse  

i s  generated. With sa tu ra t ion  i n  the pulse  shape discr imin-  

a t o r  occurring, it i s  not c l e a r  what f r a c t i o n  of the  14 Mev 

neutrons a r e  being self-gated.  Apparently, the  pulse  height  

d i scr imina tor  is sa tu ra t ing  because the  counting rate is  too 

high with no cl ipping of the r inging pulse  generated i n  the 

p l a s t i c  s c i n t i l l a t o r .  An inves t iga t ion  is being made of the  

p o s s i b i l i t y  of c l ipping t h i s  pulse  to increase the counting 

r a t e  f o r  which the pulse  height  d i scr imina tor  s a tu ra t e s .  

A similar vol tage pulse height 

The phoswich 

The measured e f f i c i e n c i e s  of the  phoswich assembly 

f o r  d i f f e r e n t  energy neutrons a r e  approximately 

En = thermal 3 Mev 14 Mev 

9.0 cm2 2.8 2.8 . 
These were determined with the high vol tage a t  1100 V under 

the  same experimental conditions as f o r  the  space neutron 

monitor. 



. 
To consider using this phoswich assembly for measure- 

ments of neutrons in space, the saturation effects in pulse 

shape discriminator, and the energy at which self-gating 

becomes predominate must be investigated thoroughly. Despite 

the more elaborate electronics the overall detector assembly 

is relatively simple and has an efficiency comparable to the 

He 3 neutron monitor. Further tests are planned on this de- 

tector with a possible balloon flight of a prototype. 
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