3,690 research outputs found

    Energetic solar particle fluxes out to 3 AU during the 7 May 1978 flare event

    Get PDF
    Simultaneous solar proton flux measurements on IMP 7 and by the world wide neutron monitor network during the May 7, 1978 flare event led to conclusions that in the energy range from 50 MeV to 10 GeV: (1) the propagation of the flare particles in the interplanetary magnetic field (IMF) between the Sun and the Earth was nearly scatter free; and (2) therefore, the intensity time (IT) profiles of the solar proton fluxes observed at Earth for about one hour after onset represent the solar injection profiles even to energies as low as 50 MeV. Observations of the IMF at Helios A indicate that the IMF was undisturbed between the Sun and Helios A at the time of the May 7, 1978 flare event; and, therefore, the solar particle propagation was also scatter free from the Sun to Helios A

    Evaluation of S190A radiometric exposure test data

    Get PDF
    The S190A preflight radiometric exposure test data generated as part of preflight and system test of KM-002 Sequence 29 on flight camera S/N 002 was analyzed. The analysis was to determine camera system transmission using available data which included: (1) films exposed to a calibrated light source subject; (2) filter transmission data; (3) calibrated light source data; (4) density vs. log10 exposure curves for the films; and (5) spectral sensitometric data for the films. The procedure used is outlined, and includes the data and a transmission matrix as a function of field position for nine measured points on each station-film-filter-aperture-shutter speed combination

    Some characteristics of the solar flare event of February 16, 1984

    Get PDF
    In the morning of February 16, 1984 a solar cosmic ray event (GLE) was recorded by the world wide network of neutron monitors (NM). The counting rate vs. time profile of the Goose Bay NM (geog. lat. = 53.3 deg. N, deog. long. = 299.6 deg E) where the increase is expressed as percent of the counting rate of an equatorial sea level NM is presented. The Goose Bay NM was observed to have the maximum response to the solar particles. Its counting rate vs. time profile exhibits a rapid increase to maximum, has a large amplitude (approx. 170%) and decays rapidly to background in approx. 90 min. In Fig. 1 we also show the counting rate vs. time profile for the Tixie Bay NM (71.6 deg, 128.9 deg) which recorded an increase of only a few percent. Since the NMs at Goose Bay and Tixie Bay have asymptotic viewing directions approx. 180 deg apart in longitude, the anisotropy of the solar particle flux at Earth from these stations

    Battles of the Philippine Sea

    Get PDF

    Power law creep and delayed failure of gels and fibrous materials under stress

    Full text link
    Motivated by recent experiments studying the creep and breakup of a protein gel under stress, we introduce a simple mesoscopic model for the irreversible failure of gels and fibrous materials, and demonstrate it to capture much of the phenomenology seen experimentally. This includes a primary creep regime in which the shear rate decreases as a power law over several decades of time, a secondary crossover regime in which the shear rate attains a minimum, and a tertiary regime in which the shear rate increases dramatically up to a finite time singularity, signifying irreversible material failure. The model also captures a linear Monkman-Grant scaling of the failure time with the earlier time at which the shear rate attained its minimum, and a Basquin-like power law scaling of the failure time with imposed stress, as seen experimentally. The model furthermore predicts a slow accumulation of low levels of material damage during primary creep, followed by the growth of fractures leading to sudden material failure, as seen experimentally.Comment: 4 pages, 5 figures. Accepted for publication, Soft Matte

    Power law creep and delayed failure of gels and fibrous materials under stress

    Get PDF
    Motivated by recent experiments studying the creep and breakup of a protein gel under stress, we introduce a simple mesoscopic model for the irreversible failure of gels and fibrous materials, and demonstrate it to capture much of the phenomenology seen experimentally. This includes a primary creep regime in which the shear rate decreases as a power law over several decades of time, a secondary crossover regime in which the shear rate attains a minimum, and a tertiary regime in which the shear rate increases dramatically up to a finite time singularity, signifying irreversible material failure. The model also captures a linear Monkman–Grant scaling of the failure time with the earlier time at which the shear rate attained its minimum, and a Basquin-like power law scaling of the failure time with imposed stress, as seen experimentally. The model furthermore predicts a slow accumulation of low levels of material damage during primary creep, followed by the growth of fractures leading to sudden material failure, as seen experimentally

    Reality in quantum mechanics, Extended Everett Concept, and consciousness

    Get PDF
    Conceptual problems in quantum mechanics result from the specific quantum concept of reality and require, for their solution, including the observer's consciousness into quantum theory of measurements. Most naturally this is achieved in the framework of Everett's "many-worlds interpretation" of quantum mechanics. According to this interpretation, various classical alternatives are perceived by consciousness separately from each other. In the Extended Everett Concept (EEC) proposed by the present author, the separation of the alternatives is identified with the phenomenon of consciousness. This explains classical character of the alternatives and unusual manifestations of consciousness arising "at the edge of consciousness" (i.e. in sleep or trance) when its access to "other alternative classical realities" (other Everett's worlds) becomes feasible. Because of reversibility of quantum evolution in EEC, all time moments in the quantum world are equivalent while the impression of flow of time appears only in consciousness. If it is assumed that consciousness may influence onto probabilities of alternatives (which is consistent in case of infinitely many Everett's worlds), EEC explains free will, "probabilistic miracles" (observing low-probability events) and decreasing entropy in the sphere of life.Comment: 17 pages, 2 figures in EP
    • …
    corecore