7,532 research outputs found

    PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    Get PDF
    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48 cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows

    Application of Stereo PIV on a Supersonic Parachute Model

    Get PDF
    The Mars Science Laboratory (MSL) is the next step in NASA's Mars Exploration Program, currently scheduled for 2011. The spacecraft's descent into the Martian atmosphere will be slowed from Mach 2 to subsonic speeds via a large parachute system with final landing under propulsive control. A Disk-Band-Gap (DBG) parachute will be used on MSL similar to the designs that have been used on previous missions, however; the DBG parachute used by MSL will be larger (21.5 m) than in any of the previous missions due to the weight of the payload and landing site requirements. The MSL parachute will also deploy at higher Mach number (M 2) than previous parachutes, which can lead to instabilities in canopy performance. Both the increased size of the DBG above previous demonstrated configurations and deployment at higher Mach numbers add uncertainty to the deployment, structural integrity and performance of the parachute. In order to verify the performance of the DBG on MSL, experimental testing, including acquisition of Stereo Particle Imaging Velocimetry (PIV) measurements were required for validating CFD predictions of the parachute performance. A rigid model of the DBG parachute was tested in the 10x10 foot wind tunnel at GRC. Prior to the MSL tests, a PIV system had never been used in the 10x10 wind tunnel. In this paper we discuss some of the technical challenges overcome in implementing a Stereo PIV system with a 750x400 mm field-of-view in the 10x10 wind tunnel facility and results from the MSL hardshell canopy tests

    Teleological Essentialism

    Get PDF
    Placeholder essentialism is the view that there is a causal essence that holds category members together, though we may not know what the essence is. Sometimes the placeholder can be filled in by scientific essences, such as when we acquire scientific knowledge that the atomic weight of gold is 79. We challenge the view that placeholders are elaborated by scientific essences. On our view, if placeholders are elaborated, they are elaborated Aristotelian essences, a telos. Utilizing the same kinds of experiments used by traditional essentialists—involving superficial change (study 1), transformation of insides (study 2), acquired traits (study 3) and inferences about offspring (study 4)—we find support for the view that essences are elaborated by a telos. And we find evidence (study 5) that teleological essences may generate category judgments

    The very large G-protein coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles

    Get PDF
    Sensory hair bundles in the inner ear are composed of stereocilia that can be interconnected by a variety of different link types, including tip links, horizontal top connectors, shaft connectors, and ankle links. The ankle link antigen is an epitope specifically associated with ankle links and the calycal processes of photoreceptors in chicks. Mass spectrometry and immunoblotting were used to identify this antigen as the avian ortholog of the very large G-protein-coupled receptor VLGR1, the product of the Usher syndrome USH2C (Mass1) locus. Like ankle links, Vlgr1 is expressed transiently around the base of developing hair bundles in mice. Ankle links fail to form in the cochleae of mice carrying a targeted mutation in Vlgr1 (Vlgr1/del7TM), and the bundles become disorganized just after birth. FM1-43 [N-(3-triethylammonium)propyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] dye loading and whole-cell recordings indicate mechanotransduction is impaired in cochlear, but not vestibular, hair cells of early postnatal Vlgr1/del7TM mutant mice. Auditory brainstem recordings and distortion product measurements indicate that these mice are severely deaf by the third week of life. Hair cells from the basal half of the cochlea are lost in 2-month-old Vlgr1/del7TM mice, and retinal function is mildly abnormal in aged mutants. Our results indicate that Vlgr1 is required for formation of the ankle link complex and the normal development of cochlear hair bundles

    Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations

    Get PDF
    In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. In order to make valid statistical inference on direct genetic effects on the primary phenotype, it is necessary to consider all potential effects in the graph, and we propose to use the estimating equations method with robust Huber-White sandwich standard errors. We evaluate the proposed causal inference based on estimating equations (CIEE) method and compare it with traditional multiple regression methods, the structural equation modeling method, and sequential G-estimation methods through a simulation study for the analysis of (completely observed) quantitative traits and time-to-event traits subject to censoring as primary phenotypes. The results show that CIEE provides valid estimators and inference by successfully removing the effect of intermediate phenotypes from the primary phenotype and is robust against measured and unmeasured confounding of the indirect effect through observed factors. All other methods except the sequential G-estimation method for quantitative traits fail in some scenarios where their test statistics yield inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset, we estimate and test genetic effects on blood pressure accounting for intermediate gene expression phenotypes. The results show that CIEE can identify genetic variants that would be missed by traditional regression analyses. CIEE is computationally fast, widely applicable to different fields, and available as an R package

    Formal change impact analyses for emulated control software

    Get PDF
    Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original system’s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly

    An Investigation of Coach Behaviors, Goal Motives, and Implementation Intentions as Predictors of Well-Being in Sport

    Get PDF
    The present study aimed to expand upon Smith, Ntoumanis, and Duda’s (2007) research by investigating the influence of coach behaviors and implementation intentions on goal striving in sport. Structural equation modeling analysis with a sample of 108 athletes revealed coach behaviors as predictors of goal motives, which in turn predicted psychological well-being after 8 weeks. Supplementary regression analyses showed no interaction between autonomous goal motives and implementation intentions; however, a synergistic effect was identified for controlled goal motives such that controlled motives furnished with implementation intentions resulted in lower well-being than controlled motives alone. In further analyses, the motives underlying an implementation intention were found to mediate the paths from goal motives to well-being. The findings are discussed in terms of the roles played by goal motives, implementation intentions, and implementation intention motives during goal striving

    Pharmacotherapeutics of Intranasal Scopolamine: FDA Regulations and Procedures for Clinical Applications

    Get PDF
    Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during the early flight days of a space mission. Bioavailability of oral (PO) SMS medications is often low and highly variable; additionally, physiological changes in a microgravity environment exacerbate variability and decrease bioavailability. These factors prompted NASA to develop an intranasal dosage form of scopolamine (INSCOP) suitable for the treatment of SMS. However, to assure safety and efficacy of treatment in space, NASA physicians prescribe commercially available pharmaceutical products only. Development of a pharmaceutical preparation for clinical use must follow distinct clinical phases of testing, phase I through IV to be exact, before it can be approved by the FDA for approval for clinical use. After a physician sponsored Investigative New Drug (IND) application was approved by the FDA, a phase I clinical trial of INSCOP formulation was completed in normal human subjects and results published. The current project includes three phase II clinical protocols for the assessment of pharmacokinetics and pharmacodynamics (PK/PD), efficacy, and safety of INSCOP. Three clinical protocols that were submitted to FDA to accomplish the project objectives: 1) 002-A, a FDA Phase II dose ranging study with four dose levels between 0.1 and 0.4 mg in 12 subjects to assess PK/PD, 2) 002-B, a phase II clinical efficacy study in eighteen healthy subjects to compare efficacy of 0.2 (low dose) and 0.4 mg (high dose) INSCOP for prophylactic treatment of motion-induces (off-axis vertical rotation) symptoms, and (3) 002-C, a phase II clinical study with twelve subjects to determine bioavailability and pharmacodynamics of two doses (0.2 and 0.4 mg) of INSCOP in simulated microgravity, antiorthostatic bedrest. All regulatory procedures were competed that include certification for Good laboratory Procedures by Theradex , clinical documentation, personnel training, selection of clinical research operations contractor, data capturing and management, and annual reporting of results to FDA were successfully completed. Protocol 002-A was completed and sample and data analysis is currently in progress. Protocol 002-B is currently in progress at Dartmouth Hitchcock Medical Center and Protocol 002-C has been submitted to the FDA and will be implemented at the same contractor site as 002-A. An annual report was filed as required by FDA on the results of Protocol 002-A. Once all the three Phase II protocols are completed, a New Drug Administration application will be filed with FDA for Phase III clinical assessment and approval for marketing of the formulation. A commercial vendor will be identified for this phase. This is critical for making this available for treatment of SMS in astronauts and military personnel on duty. Once approved by FDA, INSCOP can be also used by civilian population for motion sickness associated with recreational travel and other ailments that require treatment with anticholinergic drugs

    Novel anti-inflammatory and chondroprotective effects of the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride and human melanocortin MC3 receptor agonist PG-990 on lipopolysaccharide activated chondrocytes

    Get PDF
    Human melanocortin MC1 and MC3 receptors expressed on C-20/A4 chondrocytes exhibit chondroprotective and anti-inflammatory effects when activated by melanocortin peptides. Nearly 9 million people in the UK suffer from osteoarthritis, and bacterial infections play a role in its development. Here, we evaluate the effect of a panel of melanocortin peptides with different selectivity for human melanocortin MC1 (α-MSH, BMS-470539 dihydrochloride) and MC3 ([DTrp8]-γ-MSH, PG-990) receptors and C-terminal peptide α-MSH11-13(KPV), on inhibiting LPS-induced chondrocyte death, pro-inflammatory mediators and induction of anti-inflammatory proteins. C-20/A4 chondrocytes were treated with a panel of melanocortin peptides prophylactically and therapeutically in presence of LPS (0.1 μg/ml). The chondroprotective properties of these peptides determined by cell viability assay, RT-PCR, ELISA for detection of changes in inflammatory markers (IL-6, IL-8 and MMP-1, -3 and -13) and western blotting for expression of the anti-inflammatory protein heme-oxygenase-1. C-20/A4 expressed human melanocortin MC1 and MC3 receptors and melanocortin peptides elevated cAMP. LPS stimulation caused a reduction in C-20/A4 viability, attenuated by the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride, and MC3 receptor agonists PG-990 and [DTrp8]-γ-MSH. Prophylactic and therapeutic regimes of [DTrp8]-γ-MSH significantly inhibited LPS-induced modulation of cartilage-damaging IL-6, IL-8, MMPs −1,-3 and −13 mediators both prophylactically and therapeutically, whilst human melanocortin MC1 and MC3 receptor agonists promoted an increase in HO-1 production. In the presence of LPS, activation of human melanocortin MC1 and MC3 receptors provided potent chondroprotection, upregulation of anti-inflammatory proteins and downregulation of inflammatory and proteolytic mediators involved in cartilage degradation, suggesting a new avenue for osteoarthritis treatment
    corecore