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ABSTRACT
In genetic association studies, it is important to distinguish direct and indirect genetic

effects in order to build truly functional models. For this purpose, we consider a

directed acyclic graph setting with genetic variants, primary and intermediate pheno-

types, and confounding factors. In order to make valid statistical inference on direct

genetic effects on the primary phenotype, it is necessary to consider all potential

effects in the graph, and we propose to use the estimating equations method with

robust Huber–White sandwich standard errors. We evaluate the proposed causal infer-

ence based on estimating equations (CIEE) method and compare it with traditional

multiple regression methods, the structural equation modeling method, and sequen-

tial G-estimation methods through a simulation study for the analysis of (completely

observed) quantitative traits and time-to-event traits subject to censoring as primary

phenotypes. The results show that CIEE provides valid estimators and inference by

successfully removing the effect of intermediate phenotypes from the primary phe-

notype and is robust against measured and unmeasured confounding of the indirect

effect through observed factors. All other methods except the sequential G-estimation

method for quantitative traits fail in some scenarios where their test statistics yield

inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset,

we estimate and test genetic effects on blood pressure accounting for intermediate

gene expression phenotypes. The results show that CIEE can identify genetic variants

that would be missed by traditional regression analyses. CIEE is computationally fast,

widely applicable to different fields, and available as an R package.

K E Y W O R D S
causal inference, direct effect, directed acyclic graph, estimating equations, genetic association study, time-

to-event phenotype

1 INTRODUCTION

In genetic association studies, biotechnological developments

and collaborative efforts are allowing to analyze larger

cohorts and include more detailed intermediate and outcome

measures in the analysis (Helgadottir et al., 2016; Pickrell

et al., 2016). As a result, many genetic associations have

been identified, for example, with obesity traits and type 2

diabetes (Fuchsberger et al., 2016; Locke et al., 2016). Some

genetic markers are associated with multiple anthropometric

traits (Ried et al., 2016), anthropometric and metabolic traits

(Pickrell et al., 2016), and birthweight and type 2 diabetes

(Zeng et al., 2017). However, it is unknown if these studies,

and association studies in general, truly show evidence of

functional genetic effects (e.g., through genetically deter-

mined circulating biomarkers on type 2 diabetes, Lotta et al.,

2016, or coronary artery disease, Helgadottir et al., 2016),

of pleiotropic genetic effects on multiple phenotypes, or if
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F I G U R E 1 Overview of the directed acyclic graph considered in

this study. Y is the primary outcome measure of interest; K is a secondary

phenotype; X is the genetic marker of interest and 𝛼XY is the direct effect

of interest. It is assumed that 𝛼LY = 0 so that L is a measured predictive

factor of K, however, CIEE is also valid if L is a measured confounder

of 𝐾 → 𝑌 (i.e., 𝛼𝐿𝑌 ≠ 0 and 𝛼XL = 0). U represents unmeasured factors

and confounders potentially influencing L and Y.

the observed associations are due to indirect effects through

some other intermediate phenotypes. Also, the genetic effects

might be mediated or confounded by regulatory factors

and intermediate phenotypes such as epigenetic markers

(Corradin et al., 2016; Feil & Fraga, 2012; Relton & Davey

Smith, 2012a; Relton & Davey Smith, 2012b). As an exam-

ple, Vansteelandt et al. (2009) showed that the effect estimate

of a previously found association between a genetic marker

and lung function was biased and could not be confirmed

when the indirect effect of the genetic marker through weight

was removed. In addition, the direct genetic effects can also

be masked in traditional statistical methods when there are

indirect effects or confounded indirect effects in opposing

direction of the direct effect.

This background highlights the importance of using appro-

priate statistical methods that help disentangling direct and

indirect genetic effects through intermediate phenotypes,

which is the focus of this paper. Causal diagrams (Pearl, 1995)

are helpful for visualizing the research setting, and we con-

sider the directed acyclic graph (DAG) in Figure 1, which

includes the direct effect of a genetic marker X on the pri-

mary phenotype Y and an indirect genetic effect through a

secondary phenotype K. The model further includes measured

and unmeasured factors L and U, respectively, which poten-

tially confound the effect of K on Y. The goal of this study is to

estimate and test the direct genetic effect 𝛼𝑋𝑌 , while removing

the indirect effect of X on Y through K, and with robustness

against effects of L and U. Without restriction of generality,

we assume that there are no factors affecting X and that any

factors such as family structure or population stratification are

included as covariates in the analysis or have been dealt with

using other approaches (Eu-ahsunthornwattana et al., 2014;

Price et al., 2006). Also, we generally assume that 𝛼𝐿𝑌 = 0
so that L is a factor influencing only K. However, it will be

shown that our proposed approach also provides valid infer-

ence if L is a measured confounder of 𝐾 → 𝑌 (𝛼𝐿𝑌 ≠ 0 and

𝛼𝑋𝐿 = 0). If both 𝛼𝐿𝑌 ≠ 0 and 𝛼𝑋𝐿 ≠ 0, then the effect of L

as intermediate phenotype could be removed from Y analo-

gously to K.

Two traditional methods for the aim to estimate 𝛼𝑋𝑌 are (i)

to include the intermediate phenotypes and factors as covari-

ates in a multiple regression (MR) model of the primary

phenotype on the genetic marker, or (ii) to first regress the

primary phenotype on the intermediate phenotypes and fac-

tors, and then regress the extracted residuals on the genetic

marker (regression of residuals, RR). These approaches are

frequently used for the analysis of continuous primary phe-

notypes using a linear regression model, and MR is also a

frequently used approach for the analysis of binary or cate-

gorical primary phenotypes (using generalized linear regres-

sion models), or potentially censored time-to-event primary

phenotypes (using, for example, proportional hazards (PH) or

accelerated failure time (AFT) regression models). However,

both traditional approaches can lead to biased point estimates

and invalid testing of direct genetic effects on the primary

phenotype in some situations, by removing part of the true

association or by failing to remove the effect of the intermedi-

ate phenotype (i.e., the indirect genetic effect) or unmeasured

confounders (Cole & Hernán, 2002; Goetgeluk, Vansteelandt,

& Goetghebeur, 2008; Rosenbaum, 1984; Vansteelandt et al.,

2009). More elaborate approaches have been proposed to

overcome these limitations. The structural equation modeling

method (SEM; Bollen, 1989) is a popular approach for model-

ing DAGs, and has been applied to genetic association studies

under similar DAGs as in this study (for example, see Han-

cock et al., 2015). Further approaches have been developed in

studies on causal inference using structural nested models and

G-estimation methods (Goetgeluk et al., 2008; Robins, 1986,

1992; Robins & Greenland, 1994), or the inverse probability

weighting method (Robins, Hernán, & Brumback, 2000). A

more detailed overview of these approaches can be found in

Vansteelandt and Joffe (2014).

Applications of the sequential G-estimation method to

the DAG in Figure 1 have been described for quantitative

(i.e., completely observed) primary phenotypes (Vansteelandt

et al., 2009) and time-to-event primary phenotypes subject

to censoring (using PH and AFT regression models, Lipman

et al., 2011, and Aalen additive hazard models, Martinussen

et al., 2011). These approaches include two steps: first, an

adjusted phenotype is obtained by removing the effect of the

intermediate phenotype K from the primary phenotype Y.

Then, the association of the genetic marker with the adjusted
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phenotype is tested by accounting for the additional variabil-

ity obtained due to the estimation in the first stage. Asymp-

totic properties of the estimator have been provided for the

analysis of Aalen additive hazard models (Martinussen et al.,

2011) and for the sequential G-estimation under a more gen-

eral setting (Goetgeluk et al., 2008). However, it is shown in

this study that the sequential G-estimation method described

for time-to-event primary phenotypes using the PH and AFT

regression models (Lipman et al., 2011) is invalid. In addi-

tion, a closed-form estimate of the standard error of the direct

effect estimator was not provided in Vansteelandt et al. (2009)

and in Lipman et al. (2011).

In this study, we propose a novel method to estimate and

test the direct effect 𝛼𝑋𝑌 of a genetic marker X on the pri-

mary phenotype Y under the DAG in Figure 1. The approach

is based on the method of estimating equations and called

CIEE (Causal Inference based on Estimating Equations), and

it can be adapted to other DAGs and to linear models with

different error distributions. The standard error of �̂�𝑋𝑌 is esti-

mated by using the so-called robust Huber–White sandwich

variance estimator, and we use a large-sample Wald-type test

statistic for hypothesis testing of the absence of the direct

effect of X on Y. Using unbiased estimating functions allows

drawing on the known asymptotic properties of estimators and

test statistics. We provide details of the proposed approach for

the analysis of quantitative and time-to-event primary pheno-

types, and assess the validity of the estimation method and the

test statistic across different scenarios in an extensive simula-

tion study. In addition, we compare CIEE in the simulation

study with the traditional multiple regression methods (MR

and RR), the SEM method (Rosseel, 2012), and the sequen-

tial G-estimation methods (Lipman et al., 2011; Vansteelandt

et al., 2009). Finally, in an application to the Genetic Analy-

sis Workshop 19 (GAW19) dataset (Blangero et al., 2016), we

estimate and test direct effects of single nucleotide polymor-

phisms (SNPs) on blood pressure accounting for intermedi-

ate gene expression phenotypes and available covariates using

CIEE and MR, and discuss the different results obtained. An

R package with the implementation of CIEE is publicly avail-

able from https://cran.r-project.org/web/packages/CIEE/.

2 METHODS

In this section, we describe the proposed CIEE method for

estimating 𝛼𝑋𝑌 under the DAG in Figure 1. We start by intro-

ducing CIEE in the simpler analysis of a quantitative primary

trait, followed by describing the analysis of time-to-event

primary traits that requires an additional step. CIEE follows

the general idea of the two-stage sequential G-estimation

method. As a major difference, CIEE is a one-stage method

and estimates all parameters including 𝛼𝑋𝑌 simultaneously

by solving the proposed estimating equations.

For the analysis of a quantitative primary phenotype, CIEE

yields the same estimate of 𝛼𝑋𝑌 as the G-estimation method

described in Vansteelandt et al. (2009) if the latter is computed

using the least squares (LS) estimation. We obtain the asymp-

totic properties for the direct effect estimator by using the

asymptotic theory for estimating functions, show that the esti-

mator of the direct effect is consistent, and derive its asymp-

totic distribution. As a novel contribution, we obtain a closed

form of its standard error that is important for uncertainty

quantification. Alternatively, the standard error of the direct

effect estimator could be estimated by a nonparametric boot-

strap procedure, but it is computationally expensive and has

further drawbacks, such that it cannot be directly used for

SNPs with low minor allele frequency (MAF).

For the analysis of time-to-event primary traits, CIEE con-

tains an additional step and is an extension of the quantita-

tive trait analysis. Since the sequential G-estimation method

described for time-to-event primary phenotypes using the PH

and AFT regression models (Lipman et al., 2011) is invalid,

as is shown in this study, CIEE yields a different estimator

and to our knowledge it is the first valid approach for this set-

ting. Furthermore, we give additional empirical details on the

properties of CIEE and G-estimation estimators including the

unbiasedness and efficiency through the results of the simula-

tion study for both settings.

2.1 Analysis of a quantitative primary trait
with CIEE
First, we focus on the analysis of a (completely observed) nor-

mally distributed primary phenotype Y with 𝑛 independent

observations. In CIEE, unbiased estimating functions are con-

structed considering the two linear regression models fitted

sequentially in the G-estimation method (Vansteelandt et al.,

2009), which are as follows. In the first stage, the effect of K

on Y, 𝛼1, is estimated, adjusting for other factors, by using the

LS estimation method under the model

𝑌𝑖 = 𝛼0 + 𝛼1𝑘𝑖 + 𝛼2𝑥𝑖 + 𝛼3𝑙𝑖 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁
(
0, 𝜎21

)
,

𝑖 = 1,… , 𝑛. (1)

Then, to block all indirect paths of X on the primary pheno-

type Y, the adjusted phenotype 𝑌 is obtained by removing the

effect of K on Y with

�̃�𝑖 = 𝑦𝑖 − �̄� − �̂�1
(
𝑘𝑖 − �̄�

)
(2)

where �̄� = 1
𝑛

𝑛∑
𝑖=1
𝑦𝑖 and �̄� = 1

𝑛

𝑛∑
𝑖=1
𝑘𝑖.

In the second stage, the direct effect of X on Y, 𝛼𝑋𝑌 , is

tested under the model

𝑌𝑖 = 𝛼4 + 𝛼𝑋𝑌 𝑥𝑖 + 𝜀′𝑖, 𝜀′𝑖 ∼ 𝑁
(
0, 𝜎22

)
(3)

https://cran.r-project.org/web/packages/CIEE/
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In CIEE, we formulate unbiased estimating equations

𝑼 (𝜽) = 𝟎 for a consistent estimation of the unknown param-

eter vector 𝜽 =
(
𝜽1
𝜽2

)
with 𝜽1 = (𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝜎21)

𝑇 ,

𝜽2 = (𝛼4, 𝛼𝑋𝑌 , 𝜎22)
𝑇 , where

𝑈 (𝜽) =

⎛⎜⎜⎜⎜⎝
𝜕𝑙1

(
𝜽1
)

𝜕𝜽1

𝜕𝑙2
(
𝛼1,𝜽2

)
𝜕𝜽2

⎞⎟⎟⎟⎟⎠
(4)

𝑙1
(
𝜽1
)
=

𝑛∑
𝑖=1

[
− log

(
𝜎1
)
+ log

(
𝜑

(
𝑦𝑖 − 𝛼0 − 𝛼1𝑘𝑖 − 𝛼2𝑥𝑖 − 𝛼3𝑙𝑖

𝜎1

))]
(5)

𝑙2
(
𝛼1,𝜽2

)
=

𝑛∑
𝑖=1

[
− log

(
𝜎2
)
+ log

(
𝜑

(
𝑦𝑖 − �̄� − 𝛼1

(
𝑘𝑖 − �̄�

)
− 𝛼4 − 𝛼𝑋𝑌 𝑥𝑖

𝜎2

))]
(6)

and𝜑(.) is the probability density function of the standard nor-

mal distribution. To give an intuition on how these estimat-

ing equations are obtained, 𝑙1(𝜽1) is the log-likelihood func-

tion under the model in (1) and 𝑙2(𝛼1,𝜽2) is the log-likelihood

function under the model in (3) given that 𝛼1 is known. By

solving the first five estimating equations based on 𝑙1(𝜽1) in

(5), we are hence fitting the model in (1) to obtain an esti-

mate of 𝜽1, that is obtaining the maximum likelihood (ML)

estimates under the model in (1). Analogously, solving the

last three estimating equations based on 𝑙2(𝛼1,𝜽2) yields an

estimate of 𝜽2. Hence, we obtain the estimate of 𝜽, denoted

by �̂�, by solving 𝑼 (𝜽) = 𝟎. As a difference to the two-stage

sequential G-estimation method, we estimate all parameters

in 𝜽 simultaneously and consider the additional variability

obtained in the phenotype adjustment in (2) by using the

robust Huber–White sandwich estimator of the standard error

of �̂�.

Under mild regularity conditions (White, 1982),
√
𝑛(�̂� − 𝜽) is

asymptotically normally distributed with mean 0 and covari-

ance matrix 𝐶(𝜽) that can be consistently estimated with

𝐶𝑛(�̂�), where

𝐶𝑛(𝜽) = 𝐴𝑛(𝜽)−1𝐵𝑛(𝜽)
[
𝐴𝑛(𝜽)−1

]𝑇
(7)

𝐴𝑛(𝜽) = −1
𝑛

(
𝜕𝑈 (𝜽)
𝜕𝜽𝑇

)
(8)

𝐵𝑛(𝜽)

= 1
𝑛

𝑛∑
𝑖=1

[
𝑈𝑗

(
𝑦𝑖, 𝑘𝑖, 𝑥𝑖, 𝑙𝑖;𝜽

)
⋅ 𝑈𝑘

(
𝑦𝑖, 𝑘𝑖, 𝑥𝑖, 𝑙𝑖;𝜽

)𝑇 ]
𝑗,𝑘=1…𝑝

(9)

with 𝑈𝑗 being the 𝑗-th element in equation (4) and 𝑝 =
8. The robust Huber–White sandwich estimate of the stan-

dard error of �̂�𝑋𝑌 can then be obtained as 𝑆𝐸(�̂�𝑋𝑌 ) =√
1
𝑛
𝐶𝑛(�̂�)7,7 . Having obtained the estimates of 𝛼XY and its

standard error, we use the large-sample Wald-type test statis-

tic 𝑊 = �̂�𝑋𝑌 ∕𝑆𝐸(�̂�𝑋𝑌 ) for testing 𝐻0 ∶𝛼XY = 0 vs. 𝐻𝐴 ∶
𝛼XY ≠ 0. Under 𝐻0, 𝑊 has an asymptotic standard normal

distribution.

2.2 Analysis of a time-to-event primary trait
with CIEE
For the analysis of a time-to-event primary phenotype T,

we consider the right-censoring scheme with observed time-

to-events 𝑡𝑖 = min(𝑇𝑖, 𝐶𝑖) and censoring indicators 𝛿𝑖 =
𝐼[𝑇𝑖 ≤ 𝐶𝑖] for a random sample of individuals 𝑖 = 1,… , 𝑛,
where 𝑇𝑖 is the time-to-event,𝐶𝑖 is the censoring time and 𝐼[.]
is the indicator function. We assume that censoring is nonin-

formative. We consider the AFT, or the log-linear, model

𝑌𝑖 = log
(
𝑇𝑖
)
= 𝛼0 + 𝛼1𝑘𝑖 + 𝛼2𝑥𝑖 + 𝛼3𝑙𝑖 + 𝜎1𝜀𝑖, 𝜎1 > 0(10)

for the phenotype adjustment. The error term in equation (10)

can come from any distribution, and here we focus on the

log-linear model with 𝜀𝑖 ∼ 𝑁(0, 1) for illustration. The esti-

mating equations can be constructed as described above for

a quantitative primary phenotype, but in order to remove the

effect of K from Y, the true underlying log-time-to-event 𝑌𝑒𝑠𝑡
needs to be estimated for each censored time. 𝑌𝑒𝑠𝑡 equals the

observed log-time-to-event Y for uncensored times. To esti-

mate 𝑌𝑒𝑠𝑡 for a censored time-to-event, we obtain the con-

ditional expectation of Y given that it is greater than the

observed log-transformed right-censoring time and given the

covariates (Konigorski, Yilmaz, & Bull, 2014):

𝑦𝑒𝑠𝑡,𝑖 = 𝛿𝑖 ⋅ 𝑦𝑖 +
(
1 − 𝛿𝑖

)
⋅ 𝐸

[
𝑌𝑖|𝑌𝑖 > 𝑦𝑖, 𝑘𝑖, 𝑥𝑖, 𝑙𝑖] (11)

This additional computation is needed since the censored

time-to-events cannot be directly used to remove the effect of
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K from Y. Under the AFT model in (10), the estimates of 𝑌𝑒𝑠𝑡
in (11) should roughly behave like the true underlying time-to-

event in expectation (Lawless, 2003, pp. 284–285). The effect

of this additional step on the estimation and testing will be

discussed in the Results section under different levels of cen-

soring.

Then, we compute the adjusted phenotypes using

�̃�𝑖 = 𝑦𝑒𝑠𝑡,𝑖 − 𝑦𝑒𝑠𝑡 − 𝛼1
(
𝑘𝑖 − �̄�

)
(12)

with 𝑦𝑒𝑠𝑡,𝑖 obtained from equation (11) and 𝑦𝑒𝑠𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝑦𝑒𝑠𝑡,𝑖.

Finally, we model the direct genetic effect on the adjusted

phenotype using

𝑌𝑖 = 𝛼4 + 𝛼𝑋𝑌 𝑥𝑖 + 𝜀′𝑖, 𝜀′𝑖 ∼ 𝑁
(
0, 𝜎22

)
(13)

Hence, the estimating equations for estimating 𝜽 =
(
𝜽1
𝜽2

)
with 𝜽1 = (𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝜎1)𝑇 , 𝜽2 = (𝛼4, 𝛼𝑋𝑌 , 𝜎22)

𝑇 are

𝑈 (𝜽) =

⎛⎜⎜⎜⎜⎝
𝜕𝑙1

(
𝜽1
)

𝜕𝜽1

𝜕𝑙2
(
𝜽1,𝜽2

)
𝜕𝜽2

⎞⎟⎟⎟⎟⎠
= 𝟎 (14)

with

𝑙1
(
𝜽1
)
=

𝑛∑
𝑖=1

[
−𝛿𝑖 log

(
𝜎1
)
+ 𝛿𝑖 log

(
𝜑

(
𝑦𝑖 − 𝛼0 − 𝛼1𝑘𝑖 − 𝛼2𝑥𝑖 − 𝛼3𝑙𝑖

𝜎1

))

+
(
1 − 𝛿𝑖

)
log

(
1 − Φ

(
𝑦𝑖 − 𝛼0 − 𝛼1𝑘𝑖 − 𝛼2𝑥𝑖 − 𝛼3𝑙𝑖

𝜎1

))]
(15)

and

𝑙2
(
𝜽1,𝜽2

)
=

𝑛∑
𝑖=1

[
− log

(
𝜎2
)
+ log

(
𝜑

(
𝑦𝑒𝑠𝑡,𝑖 − 𝑦𝑒𝑠𝑡 − 𝛼1

(
𝑘𝑖 − �̄�

)
− 𝛼4 − 𝛼𝑋𝑌 𝑥𝑖

𝜎2

))]
(16)

where 𝜑(.) and Φ(.) are the standard normal probability

density and cumulative distribution function, respec-

tively. 𝑼 (𝜽) = 𝟎 are unbiased estimating equations with√
𝑛(�̂� − 𝜽)

𝐷
→𝑁(0, 𝐶(𝜽)), where 𝐶(𝜽) is estimated as

described in the previous section. Here, 𝑙1(𝜽1) is the log-

likelihood function under the model in equation (10) and

𝑙2(𝜽1,𝜽2) is the log-likelihood function under the model in

equation (13) given that 𝜽1 is known. By solving the first

five estimating equations based on 𝑙1(𝜽1) in equation (15),

we obtain an estimate of 𝜽1, and solving the last three

estimating equations based on 𝑙2(𝜽1,𝜽2) yields an estimate

of 𝜽2. See Supplementary Text 1 for the derivation of 𝑌𝑒𝑠𝑡
in equation (11) and for further explanations on how the

estimating equations were constructed.

2.3 Estimation of standard errors using
nonparametric bootstrap
As an alternative to the sandwich variance estimator of �̂�

based on estimating equations, the nonparametric bootstrap

(Efron, 1981) can be used (see also Goetgeluk et al., 2008).

In order to obtain the standard error estimate of �̂�𝑋𝑌 , in step

1, a sample of 𝑛 individuals is randomly selected from the

data with replacement. In step 2, the point estimate �̂�𝑋𝑌 ,𝑙 is

obtained by solving the estimating equations in (4) or (14),

depending on the type of the primary phenotype. These two

steps are performed 𝐵 times and the bootstrap standard error

estimate of �̂�𝑋𝑌 can be obtained as the standard deviation of

the �̂�𝑋𝑌 ,𝑙, 𝑙 = 1,… , 𝐵.

2.4 Simulation study
In order to evaluate CIEE, simulation studies were performed

to firstly investigate the properties of the point estimate of

𝛼XY, and whether the effect of the intermediate phenotype

K is successfully removed from the primary phenotype Y,

for both quantitative and time-to-event phenotypes. Next, the

empirical type I error and power estimates of the Wald-type

tests based on CIEE using robust sandwich standard errors

and using nonparametric bootstrap standard errors (based on

𝐵 = 1, 000 resamples) were obtained. For a quantitative pri-

mary phenotype, they were compared with the two naïve

regression modeling approaches (MR and RR), the sequential

G-estimation method (Vansteelandt et al., 2009) and the SEM

method (Bollen, 1989; Rosseel, 2012). Under the AFT model,

the results were compared to the naïve MR approach and the

extension of the sequential G-estimation method proposed by

Lipman et al. (2011).

The genetic marker X was generated with an additive

genetic coding for minor allele frequencies MAF𝑋 = 0.05,
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F I G U R E 2 Overview of the scenarios considered in the simula-

tion study for investigation of the type I error. The models are submodels

of the DAG in Figure 1 with some of the effects set to 0. Scenario 7

equals scenario 4 in this figure with larger effect sizes. Scenario 6 con-

tains a nonzero effect of L on Y in the data generation, providing a test

of robustness against model misspecification. Nonzero direct effects of

X on Y are considered under each scenario for investigation of the power

of the test statistics.

0.1, 0.2, 0.4. The phenotypes and factors were then generated

from different subgraphs of the DAG in Figure 1 with different

effect sizes, for a sample of 𝑛 = 1, 000 individuals and using

𝑚 = 10, 000 replication datasets. A detailed overview of the

scenarios and parameter values can be found in Supplemen-

tary Table 1. Figure 2 gives a graphical overview of the dif-

ferent scenarios, including models with and without measured

and unmeasured confounding factors, under the null hypoth-

esis of no direct genetic effect of X on Y. Under the AFT

model, time-to-event traits with 10%, 30%, and 50% censoring

were considered. The effect sizes were set to simulate realis-

tic situations with small genetic effects and small/moderate

effects of the intermediate phenotype and the measured as

well as unmeasured factors on the primary phenotype (scenar-

ios 1–5). Under the null model of a quantitative primary phe-

notype, two additional scenarios (6 and 7) were investigated

where scenario 6 contains confounding of the indirect effect

through measured factors, and scenario 7 equals scenario 4

but with larger effect sizes. While the data generation con-

tains a nonzero effect of L on Y, the CIEE, SEM, and sequen-

tial G-estimation methods assume 𝛼LY = 0 in the analysis, so

that scenario 6 provides an assessment of the robustness of the

methods against model misspecification. For a more detailed

description of the simulation study scenarios and data gener-

ation, see Supplementary Text 2.

For the two traditional approaches, MR and RR, estimates

of 𝛼𝑋𝑌 were obtained by fitting the following models in the

analysis of a quantitative primary trait.

MR: Obtain the LS estimate of 𝛼𝑋𝑌 by fitting

𝑌𝑖 = 𝛼0 + 𝛼𝑋𝑌 𝑥𝑖 + 𝛼1𝑘𝑖 + 𝛼2𝑙𝑖 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁
(
0, 𝜎21

)
RR: First, obtain residuals �̂�1𝑖 = 𝑦𝑖 − (�̂�0 + �̂�1𝑘𝑖 + �̂�2𝑙𝑖) by

fitting

𝑌𝑖 = 𝛼0 + 𝛼1𝑘𝑖 + 𝛼2𝑙𝑖 + 𝜀1𝑖, 𝜀1𝑖 ∼ 𝑁
(
0, 𝜎21

)
using the LS estimation. Second, obtain the LS estimate of

𝛼𝑋𝑌 by fitting

�̂�1𝑖 = 𝛼3 + 𝛼𝑋𝑌 𝑥𝑖 + 𝜀2𝑖, 𝜀2𝑖 ∼ 𝑁
(
0, 𝜎22

)
Then, 𝐻0 ∶ 𝛼XY = 0 vs. 𝐻𝐴 ∶ 𝛼XY ≠ 0 was tested using the

default t-test in the lm() function in R. For the analysis of a

time-to-event primary trait, the censored log-linear regression

model in equation (10) was fitted using the survreg() function

in the survival R package to obtain the ML estimate of 𝛼𝑋𝑌 ,

and the Wald test was performed for testing the null hypothesis

𝐻0 ∶ 𝛼XY = 0.

In order to obtain estimates of 𝛼𝑋𝑌 and its standard error

estimate under the SEM method, the sem() function in the

lavaan R package (Rosseel, 2012) was used with default set-

tings to fit the DAG based on the following equations:

𝐿𝑖 = 𝛼0 + 𝛼1𝑥𝑖 + 𝜀1𝑖, 𝜀1𝑖 ∼ 𝑁
(
0, 𝜎21

)
𝐾𝑖 = 𝛼2 + 𝛼3𝑥𝑖 + 𝛼4𝑙𝑖 + 𝜀2𝑖, 𝜀2𝑖 ∼ 𝑁

(
0, 𝜎22

)
𝑌𝑖 = 𝛼5 + 𝛼6𝑘𝑖 + 𝛼𝑋𝑌 𝑥𝑖 + 𝜀3𝑖, 𝜀3𝑖 ∼ 𝑁

(
0, 𝜎23

)
.

The default Wald-type test in the sem() function was then used

to test𝐻0 ∶ 𝛼XY = 0 vs.𝐻𝐴 ∶ 𝛼XY ≠ 0.

To apply the sequential G-estimation methods, the func-

tions CGcont() and CGsurvreg() in the R package CGene
(Lipman & Lange, 2011), obtained from http://www.

inside-r.org/packages/cran/CGene, were used with default

values and adapted to the considered log-linear model for the

analysis.

3 RESULTS

3.1 Estimation of coefficients and standard
errors
First, the estimates of the direct genetic effect and its stan-

dard error were investigated for all methods for the analysis of

quantitative and time-to-event primary phenotypes, under the

null and alternative hypotheses (see Supplementary Tables 2–

5). The results showed that the CIEE point estimates of the

direct genetic effect are unbiased across all scenarios. Also,

http://www.inside-r.org/packages/cran/CGene
http://www.inside-r.org/packages/cran/CGene
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the standard error estimates based on the estimating equa-

tions’ Huber–White sandwich estimate, nonparametric boot-

strap, and the empirical standard deviation of point estimates

(Supplementary Table 6) were identical up to 2 decimals. Fur-

ther checks showed that the effect of K on Y was successfully

removed using the CIEE method so that 𝑌 was uncorrelated

with K (data not shown).

Regarding the naïve approaches, the coefficient estimates

under the MR and RR models showed some bias whenever

there was unmeasured confounding (scenarios 4, 5, and 7

in Supplementary Table 2). The direct effect can be under-

estimated as in the scenarios considered here, or overesti-

mated if, for example, the unmeasured confounding effect

of U on Y is negative. When the effect of the intermedi-

ate on the primary phenotype was only confounded through

measured factors in scenario 6, then both methods provided

unbiased genetic effect estimates. The SEM genetic effect

estimates also showed some bias when there was a higher

amount of unmeasured confounding (scenario 7 in Supple-

mentary Table 2), or when the DAG model was misspecified

(scenario 6 in Supplementary Table 2, when the estimation

falsely assumed 𝛼𝐿𝑌 = 0 while the data were generated with

𝛼𝐿𝑌 = 0.3). However, when the model was changed to cor-

rectly model an effect of L on Y in scenario 6, then unbi-

ased genetic effect estimates were obtained with the SEM

method (data not shown). The standard error estimates of �̂�𝑋𝑌
obtained through MR, RR, and SEM were close to the CIEE

standard error estimates when the amount of unmeasured con-

founding was small or medium. Under scenario 7, the RR

modeling approach underestimated the standard errors.

Among the investigated sequential G-estimation

approaches, the method for analyzing quantitative traits

(Vansteelandt et al., 2009) provided the same unbiased genetic

effect estimates as CIEE, however, the approach for time-to-

event traits (Lipman et al., 2011) did not remove the effect

of the intermediate phenotype (see Supplementary Text

3 for further details) and provided strongly biased direct

effect estimates whenever there was some effect of K on Y

(Supplementary Tables 4 and 5). In addition, the sequential

G-estimation methods do not provide a standard error

estimate of the estimated direct genetic effect, and therefore,

we could only obtain standard error estimates using the

nonparametric bootstrap.

3.2 Empirical type I error and power
As a direct consequence of the bias of genetic effect estimates

discussed above, all investigated approaches except the pro-

posed CIEE method and the sequential G-estimation method

for quantitative primary traits led to inflated empirical type

I errors in some scenarios (see Tables 1 and 2). Inference

based on CIEE was valid for SNPs with different MAF, dif-

ferent effect sizes, with a small or moderate amount of cen-

soring in the analysis of primary time-to-event traits, and also

if unmeasured confounding through L was present. Statisti-

cal inference remained valid also for heavy censoring (e.g.,

80% censoring) when there was no unmeasured confounding

(data not shown). In addition, CIEE was robust against dis-

tributional misspecifications. For example, when the quanti-

tative primary trait Y given X, K, L, U was not normally dis-

tributed but followed a t(4), t(8), or log-normal distribution,

estimates of 𝛼XY remained unbiased and type I errors were

valid (Supplementary Table 6).

The traditional regression methods provided valid testing

whenever there was no unmeasured confounding with RR

being consistently more conservative (Table 1). SEM was

slightly more robust to small unmeasured confounding but

had inflated type I error for larger unmeasured confounding

(scenario 7) or when the DAG model was misspecified (sce-

nario 6). The sequential G-estimation method (Vansteelandt

et al., 2009) led to valid type I errors for all considered sce-

narios when quantitative traits were analyzed. For the analy-

sis of time-to-event primary traits, however, the proposed G-

estimation approach (Lipman et al., 2011) provided largely

inflated type I errors across almost all scenarios (Table 2).

For the power study, the same scenarios of the type I error

study were considered for each type of primary trait, with

direct genetic effect sizes (𝛼𝑋𝑌 ) of 0.1 and 0.2. The results

were highly consistent across all scenarios both for the anal-

ysis of quantitative traits (Table 3) and time-to-event traits

(Supplementary Table 7). All approaches had very similar

power in each scenario where they had valid type I error. It

is noteworthy that CIEE did not lose power compared to the

traditional approaches in scenarios 1–3 where they had valid

type I error. Furthermore, in the presence of unmeasured con-

founding in scenarios 4–5, the power of CIEE decreased only

minimally while the traditional methods had inflated type I

error (as well as lower power) and should not be applied.

3.3 Application to Genetic Analysis
Workshop 19 data
For an application of the proposed approach and to illus-

trate how its result can lead to different conclusions com-

pared to traditional approaches, we performed a genetic asso-

ciation analysis of the GAW19 data (Blangero et al., 2016).

The data contains whole genome-sequence data, gene expres-

sion in lymphocytes measured with microarrays, blood pres-

sure phenotypes, as well as nongenetic covariates from the

T2D-GENES Consortium. We chose systolic blood pressure

(SBP) as the primary phenotype Y and gene expression as the

secondary phenotype K that could mediate the genetic effect

of SNPs X on Y. The primary goal was to identify SNPs with

a direct effect on SBP that is not (or only partially) mediated

through gene expression, i.e., SNPs with an effect on SBP

other than through gene expression. While indirect genetic
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T A B L E 1 Empirical type I error estimates under the null model of a quantitative primary phenotype

Scenario MAFX CIEE BS G-EST MR RR SEM
1 0.05 5.45% 5.40% 5.03% 5.35% 5.29% 5.04%

0.1 5.26% 5.18% 5.05% 5.34% 5.23% 5.05%

0.2 4.83% 4.88% 4.76% 4.94% 4.87% 5.34%

0.4 5.16% 5.17% 5.12% 5.06% 4.80% 5.24%

2 0.05 5.17% 5.12% 4.77% 4.71% 4.67% 5.57%

0.1 5.16% 5.13% 5.02% 5.12% 4.99% 4.75%

0.2 5.01% 4.91% 4.87% 5.16% 4.90% 5.46%

0.4 5.14% 5.14% 5.06% 4.91% 4.54% 4.86%

3 0.05 5.37% 5.27% 4.89% 4.89% 4.82% 5.18%

0.1 5.17% 5.11% 4.99% 5.00% 4.87% 4.85%

0.2 4.89% 4.90% 4.81% 5.25% 4.95% 5.19%

0.4 5.06% 4.96% 4.97% 4.77% 4.38% 5.21%

4 0.05 5.44% 5.30% 4.98% 5.15% 5.10% 5.32%

0.1 5.25% 5.21% 4.99% 5.27% 5.13% 4.87%

0.2 4.81% 4.79% 4.73% 6.03% 5.68% 4.98%

0.4 5.09% 5.14% 5.03% 5.90% 5.48% 5.43%

5 0.05 5.26% 5.11% 4.83% 4.94% 4.82% 5.42%

0.1 5.08% 5.02% 4.91% 5.42% 5.23% 5.24%

0.2 4.91% 4.93% 4.88% 6.01% 5.69% 5.42%

0.4 5.12% 5.14% 5.07% 6.11% 5.75% 5.40%

6 0.05 5.14% 5.21% 4.57% 5.35% 5.29% 5.62%

0.1 5.29% 5.27% 5.10% 5.13% 5.08% 5.83%

0.2 5.03% 4.99% 4.83% 5.25% 5.01% 6.01%

0.4 5.09% 5.04% 4.96% 4.94% 4.68% 6.33%

7 0.05 5.06% 4.97% 4.61% 36.14% 30.45% 21.33%

0.1 5.05% 5.16% 4.94% 56.37% 45.31% 33.26%

0.2 4.97% 4.93% 4.94% 73.78% 54.86% 45.47%

0.4 5.18% 5.23% 5.17% 82.96% 59.54% 55.24%

Data were generated for 𝑛 = 1, 000 individuals and 𝑚 = 10, 000 replicates. CIEE is the proposed method using estimating equations; BS is CIEE using nonparametric

bootstrap standard errors; G-EST is the sequential G-estimation approach (Vansteelandt et al., 2009); MR is multiple regression; RR is residual regression; and SEM is

structural equation modeling.

effects through gene expression are functionally interesting,

the rationale for our analysis was that if such indirect effects

are in opposite direction of the “direct” genetic effect (through

any other intermediate than gene expression), the genetic

effects can be masked if they are not modeled. We assume the

underlying DAG in Figure 3 and that the covariates age, sex,

and smoking are not related to the SNPs under investigation,

but can be confounders (denoted by 𝐿1, 𝐿2, 𝐿3) of the rela-

tionship between K and Y. Twenty percent of the study partic-

ipants took blood pressure-reducing antihypertensive medica-

tion. Hence, their observed blood pressure is lower than their

true untreated blood pressure would be. Adjusting blood pres-

sure for the effect of blood pressure-lowering medication is

crucial when the objective is to identify SNPs that are increas-

ing or decreasing blood pressure. For this situation, perform-

ing a censored regression using the AFT model with antihy-

pertensive medication as censoring indicator 𝛿 is suggested

(Konigorski et al., 2014; Tobin et al., 2005). Hence, this data

analysis illustrates an application of CIEE when the primary

phenotype is subject to censoring.

In the analysis, we focused on SNPs on chromosome

19, since it contained the gene IL12RB1 whose mRNA

expression had the highest dependence with SBP (Kendall's

𝜏 = 0.24 between gene expression and SBP𝑒𝑠𝑡 adjusted for

𝐿1, 𝐿2, 𝐿3 and antihypertensive medication, as described in

Konigorski, Yilmaz, & Pischon, 2016). After basic standard

quality checks, 113, 890 SNPs with MAF greater than 0.05

were considered for the analysis. Among them, the 45, 200
SNPs lying in cis within 5 kb of genes were analyzed together

with the gene expression of their corresponding gene. In brief,

848 genes were included in the analysis and complete data for

this analysis was available for 81 unrelated individuals.
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T A B L E 2 Empirical type I error estimates under the null model of

a time-to-event primary phenotype

Scenario Censoring CIEE BS G-EST MR
1 10% 5.29% 5.29% 22.81% 4.82%

30% 5.24% 5.13% 24.98% 5.00%

50% 5.29% 5.33% 20.24% 5.28%

2 10% 5.15% 5.45% 34.48% 5.28%

30% 5.13% 5.29% 37.83% 5.15%

50% 5.14% 5.20% 30.33% 4.74%

3 10% 5.10% 5.12% 34.54% 5.34%

30% 4.94% 4.92% 37.25% 5.30%

50% 4.88% 4.77% 30.66% 4.84%

4 10% 5.23% 5.19% 31.59% 6.07%

30% 5.15% 5.15% 35.40% 6.17%

50% 5.24% 5.14% 29.43% 5.68%

5 10% 5.15% 5.27% 4.94% 6.17%

30% 4.98% 5.08% 4.80% 5.79%

50% 4.93% 4.84% 4.33% 5.73%

Data were generated for 𝑛 = 1, 000 individuals and 𝑚 = 10, 000 replicates. The

MAF of the marker𝑋 was set to 0.2. CIEE is the proposed method using estimating

equations; BS is CIEE using nonparametric bootstrap standard errors; G-EST is

the sequential G-estimation approach (Lipman et al., 2011); and MR is multiple

log-linear censored regression.

F I G U R E 3 Overview of the assumed DAG for the analysis of the

GAW19 data. Systolic blood pressure (BP) is the primary outcome; gene

expression is the secondary phenotype and sex, age, and smoking are fac-

tors potentially influencing both phenotypes but unrelated to the investi-

gated genetic markers.

Some of the 45, 200 SNPs were considered for their associ-

ation with more than one gene expression, since they were in

close proximity to more than one gene. For each of the 53, 151
tested associations, CIEE was applied under the AFT model in

equations (10)–(13) with measured confounders 𝐿1, 𝐿2, 𝐿3.

Additionally, traditional censored regression models were

computed with or without taking gene expression as sec-

ondary phenotype into account:

MR1∶ 𝑌𝑖 = 𝛼0 + 𝛼1𝑙1,𝑖 + 𝛼2𝑙2,𝑖 + 𝛼3𝑙3,𝑖 + 𝛼4𝑘𝑖 + 𝛼𝑋𝑌 𝑥𝑖 +𝜀𝑖

MR2∶ 𝑌𝑖 = 𝛼0 + 𝛼1𝑙1,𝑖 + 𝛼2𝑙2,𝑖 + 𝛼3𝑙3,𝑖 + 𝛼𝑋𝑌 𝑥𝑖 + 𝜀𝑖

Results from CIEE, MR1, and MR2 are shown for the five

SNPs with the smallest P-values obtained from testing the

absence of the direct genetic effect on Y using CIEE (Table 4).

The SNP rs56202530 with the smallest P-value using CIEE

is upstream of the IL27RA gene, and its direct effect on SBP

is estimated to be –0.15 (𝑆𝐸 = 0.03, P-value = 7.2 × 10−7)

using CIEE, and –0.08 (𝑆𝐸 = 0.03, P-value = 9.5 × 10−3)

using MR1. This was the only SNP with an adjusted P-value

less than 0.05 using CIEE. The results obtained through MR1

and MR2 were very similar to each other. None of the SNPs

in Table 4 were found to be associated with sex, age, or

smoking (data not shown). The five SNPs with the small-

est P-values using MR1 are shown in Supplementary Table

8. None of these SNPs returned an adjusted P-value less

than 0.05.

In a comparison of the results using CIEE and MR, for

the SNPs in Table 4, the estimated direct effects were in the

same direction but larger using CIEE while estimated stan-

dard errors were similar – leading to different conclusions on

the statistical significance of the effect estimates. Assuming

the correctness of the underlying DAG in Figure 3 and using

the results from the simulation study, the most plausible expla-

nation for the effect estimate differences is that there is unmea-

sured confounding of the indirect effect𝑋 → 𝐾 → 𝑌 through

L in opposite effect direction (e.g., 𝑋 → 𝑌 negative, 𝑈 → 𝐿
negative, 𝐿→ 𝐾, 𝐾 → 𝑌 , 𝑈 → 𝑌 positive effects). This

suggests that using traditional approaches without accounting

for indirect effects of secondary phenotypes and confounders

might miss true causal SNPs (such as SNPs 1, 2, 3, and 5 in

Table 4).

4 DISCUSSION

In this study, we propose a new method called CIEE to esti-

mate the direct genetic effect on a primary phenotype, adjust-

ing for indirect effects through intermediate phenotypes that

can also be influenced by measured or unmeasured confound-

ing factors. Multiple influencing factors and multiple inter-

mediate phenotypes can be included in the model. For the

analysis of quantitative traits, our novel contribution is that

CIEE gives a closed-form estimate of the standard error and a

simpler test statistic, while the estimator of the direct genetic

effect amounts to the same as the G-estimation method using

LS estimation (Vansteelandt et al., 2009). For the analysis

of time-to-event traits subject to censoring, CIEE includes

a new approach for the removal of the indirect effect and

allows valid inference while the G-estimation method for the

models considered here by Lipman et al. (2011) is invalid.

CIEE yields a consistent estimator for the direct effect and

its standard error, even when there is unmeasured confound-

ing of the indirect effect through measured factors. Since it is

based on established theory of unbiased estimating functions,
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T A B L E 3 Power estimates under the alternative hypothesis models of a quantitative primary phenotype

Scenario 𝜶XY CIEE BS G-EST MR RR SEM
1 0.1 42.33% 42.26% 41.98% 43.13% 42.63% 42.31%

0.2 94.62% 94.59% 94.54% 94.81% 94.68% 94.13%

2 0.1 42.52% 42.40% 42.22% 41.55% 40.53% 43.51%

0.2 94.22% 94.09% 94.09% 94.18% 93.81% 94.15%

3 0.1 42.35% 42.30% 41.98% 42.85% 41.90% 42.32%

0.2 94.20% 94.17% 94.06% 94.03% 93.68% 94.17%

4 0.1 39.90% 39.74% 39.53% 30.12% 29.30% 35.85%

0.2 91.88% 91.88% 91.78% 87.92% 87.38% 90.26%

5 0.1 39.04% 38.99% 38.76% 28.79% 28.11% 35.56%

0.2 92.48% 92.44% 92.38% 87.10% 86.66% 90.46%

In all scenarios, data were generated for 𝑛 = 1, 000 individuals and 𝑚 = 10, 000 replicates. The MAF of the marker 𝑋 was set to 0.2. CIEE is the proposed method using

estimating equations; BS is CIEE using nonparametric bootstrap standard errors; G-EST is the sequential G-estimation approach (Vansteelandt et al., 2009); MR is multiple

regression; RR is residual regression; and SEM is structural equation modeling.

the approach can be extended to different error distributions.

However, the use of robust sandwich standard error estimates

also provides valid inference if the error distribution is mis-

specified, as shown in the simulation study. Also, using the

robust sandwich standard error is preferred compared to the

nonparametric bootstrap standard error since the latter is com-

putationally intensive and cannot be directly used for SNPs

with small MAFs. Of note, when analyzing quantitative traits,

CIEE yields estimates equivalent to the LS estimates under the

corresponding models, which do not rely on any distribution

assumption. Therefore, the resulting direct effect estimate can

be used even if the distribution assumption is not satisfied.

CIEE is implemented in an R package of the same name and

is freely available.

Applying CIEE to genetic association studies can both

identify genetic variants that would be missed by traditional

analyses, and can prevent false positive results – depending

on whether the indirect genetic effect with unmeasured con-

founders is in the same or opposite direction of the direct

effect. In the application of CIEE to the GAW19 data, we

investigated genetic associations with SBP by accounting for

intermediate gene expression phenotypes. While such “indi-

rect” genetic effects through gene expression can provide

valuable functional information and help to filter candidate

loci, it has rarely been considered that if such indirect effects

are in opposite direction of the direct genetic effect (through

any other intermediate than gene expression), the genetic

effects can be masked if the direct and indirect effects are

not modeled. This was the rationale for our novel applica-

tion approach and indeed, our results suggest the potential

role of a new genetic locus, which would have been missed

if a traditional regression analysis was performed. The iden-

tified SNP is upstream of the IL27RA gene, which is involved

in anti-inflammatory processes and immune response (Hunter

& Kastelein, 2012).

The results of the simulation study also provided a detailed

analysis when the standard and other proposed methods pro-

vide valid estimation and testing, and when they should not be

used. Standard multiple regression approaches (which include

linear regression, PH and AFT regression models) were valid

in all scenarios as long as there was no unmeasured confound-

ing of the indirect genetic effect. For example, they also pro-

vided valid inference when there was measured confounding

of the indirect genetic effect – which is in contrast to some

claims in the literature (Goetgeluk et al., 2008). The genetic

effect estimates obtained from SEM were also affected by

unmeasured confounding of the indirect genetic effect that

exemplifies that SEM is highly dependent on the correctness

of the assumed paths and edges and may lead to biased esti-

mates otherwise. Finally, the sequential G-estimation method

(Vansteelandt et al., 2009) provides equally valid testing

compared to CIEE for the analysis of quantitative traits,

but the G-estimation approach proposed by Lipman et al.

(2011) for the analysis of time-to-event primary phenotypes

is not able to remove the effect of intermediate phenotypes

leading to biased direct effect estimates and invalid test-

ing. In addition, the sequential G-estimation methods do not

provide a standard error estimate of the estimated direct

effect.

For an application of CIEE and any other model to the anal-

ysis of DAG models, it should be noted that despite the robust-

ness properties of CIEE, there are still some assumptions that

are required for valid testing and estimation. One assump-

tion is that there is no unmeasured confounding of the direct

genetic effect, i.e., factors both affecting the genetic marker

and primary phenotype. For genetic association studies, this

assumption seems plausible and if any such factors (e.g., pop-

ulation stratification) were present, they could be controlled

for in an initial step or considered as covariates. Further-

more, an a priori choice of relevant intermediate variables and
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influencing factor (i.e., distinction between K, L) is impor-

tant. Finally, while CIEE and the G-estimation methods are

robust against unmeasured confounding of the indirect effect

through measured factors, they lead to biased point estimates

and inflated type I errors similar to traditional approaches if

there is direct unmeasured confounding of the indirect effect

(e.g., if U affects K directly and not only through L), i.e., if

the DAG is misspecified.

We believe that the application of CIEE to association stud-

ies in genetic epidemiology and other biomedical fields can

provide new insights about direct effects. In addition, future

extensions of CIEE including multiple primary phenotypes

in the analysis can provide further possibilities to build more

complex and realistic models.
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