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Formal Change Impact Analyses for Emulated Control Software

C. J. Fidge

School of Information Technology and Electrical Engineering, The University of Queensland

Abstract. Processor emulators are a software tool for allow-long-lived control systems. Maintaining computer processors
ing legacy computer programs to be executed on a moderthat are no longer mass produced is prohibitively expensive,
processor. In the past emulators have been used in trivial afas is rewriting legacy software for a new machine, so proces-
plications such as maintenance of video games. Now, howsor emulation is seen as an attractive potential solution [9].
ever, processor emulation is being applied to safety-critical However, for processor emulation to be acceptable in
control systems, including military avionics. These applica-situations where human life and national security are at
tions demand utmost guarantees of correctness, but no verstake, its use demands the strongest possible guarantees of
fication techniques exist for proving that an emulated systentorrectness. Avionics software development is governed by
preserves the original system’s functional and timing proper-internationally-recognised standards such as DO-178B [26],
ties. Here we show how this can be done by combining conwhich is itself supplemented by recommended processes for
cepts previously used for reasoning about real-time progranavionics software maintenance [35,36]. These stress the im-
compilation, coupled with an understanding of the new andportance of performinghange impact analyses assess the
old software architectures. In particular, we show how bothpotential effects of software upgrades on the functional and
the old and new systems can be given a common semanticiiming characteristics of an existing control system.

thus allowing their behaviours to be compared directly. Unfortunately, standards tend to lag behind technological
developments, and the avionics standards do not yet describe
Key words: Software maintenance — Program analysis processes for analysing emulated control software. There-

fore, this paper aims to show how real-time program proof

concepts [15, 16, 28], especially those previously intended for

reasoning about compiler correctness [19, 25], can be used to

verify that an emulated Operational Flight Program provides

a behaviour ‘equivalent’ to that of the legacy code. This is

a challenging problem because processor emulation involves

Processor emulators are a valuable software tool for comexecution of both legacy machine code and new high-level

puter system maintenance. They allow a machine-code prdanguage software patches, and because embedded control

gram written in an obsolete instruction set to be executed orsoftware interacts directly with its hardware environment.

a modern processor. In effect, a processor emulator interprets In previous work [13] we performed a partial-correctness

an old program on a new machine. To date, processor emulanalysis, based on the software’s underlying weakest precon-

tion has enjoyed considerable success in trivial applicationglition semantics. By contrast, this paper performs a much

such as maintenance of video games [18]. clearer and simpler total-correctness proof at the program-
Now, however, the technology is being trialled for safety ming statement level, by modelling language primitives as

and mission-critical applications such as military avion- relational assignments.

ics [9]. Whereas aircraft remain in service for decades, the

embedded microprocessors they contain have a lifecycle

measured in mere years. Processor obsolescence has thus Belegacy Mission Computer System Software

come a major technical [8] and economic [7] problem for

Correspondence tdr C. Fidge, ITEE, University of Queensland, Australia AS a.running exgmple, 'thIS section introduces a fragmem of
4072. E-mailcjf@itee.uq.edu.au . Fax: +61 7 3365 1533. a typical Operational Flight Program, as would be found in a
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Fig. 1. Typical military avionics control system architecture
major cycle (100ms)
[ |
I~ ol
minor cycle (50ms)
l< N
[ |
Rate Comm Log |idle Rate Comm idle
T T
frame 1 frame 2

Fig. 2. Schedule for the example Operational Flight Program

military avionics system. Such programs are notoriously hard — Comm: Sends the current altitude and ascent rate to the
to maintain because Display Processor

o ) — Log: Writes altitude data to the flight recorder
— they are embedded within a larger system, and thus inter-

act directly with hardware devices, The Mission Computer Executive is then responsible for
— they must respond to multiple inputs and control multiple invoking these tasks in a timely manner. A typical ‘timer-
outputs, so they require concurrency, driven’ executive [17] consists of a loop which at each it-

— they must react to external events in a timely manner, sceration:
they are subject to rigid real-time constraints, and its iodic 1 ) _
— they have limited computing resources at their disposal, -+ Waits for a periodic timer interrupt to occur;

so there is usually no clear separation between ‘system™" !ncrements framecounter; and ,
and ‘application’ code [21] 3. invokes one or more tasks, depending on the frame num-

ber.
A typical avionicsMission Computer Systeoonsists of . .
several Remote Terminals connected via a data bus, as shova_rte frequency of timer interrupts therefore governs the rate at
ich tasks can be performed. For the purposes of our exam-

in Fig. 1 [22]. EachRemote Terminais a processor board WI hat fi . ih af
dedicated to a particular aircraft function, and is normally pfez\(/)veh assumer;c alt tlmerllqntgrruitls_ oceur with a requehr_]cry]/
connected directly to one or more peripheral devices. For in® ertz on the legacy Radar Altimeter processor, whic

stance, th&Radar Altimeteprocessor samples altitude read- M€ans that each frame has a duration of 50 milliseconds.

ings from the corresponding sensor, whereaiisplay Pro-  1he choice of which tasks to invoke in a given frame
cessorsends information to cockpit instruments. Thiis- 1S made by following a predetermined tassheduleFig. 2

sion Control Computemanages overall system functions and shows a possible schedule for the three tasks on the Radar Al-
controls bus access. timeter processor. The critical Rate and Comm tasks are exe-

cuted every 50 milliseconds, but the less important Log task
is executed only every 100 milliseconds. (Non-critical diag-
tecture [3]. This consists of severtdsks which perform nostic tasks may occupy the idle time at the end .of frgmes.)
the necessary computations, anMsion Computer Exec- Atthe end of each majorcyclgthe patterr? repeats indefinitely.
utive, which controls allocation of computing resources to The tasks themselv_es typically read inputs, process data,
tasks [L1]. For instance, we assume here that there are thr@&'d Send outputs. For instance, the legacy code for the Rate

tasks to be performed on the Radar Altimeter processor. @Sk is shown in Fig. 3. For readability we use assembly no-
tation throughout this paper, although the legacy program is

— Rate: Samples the current altitude and calculates the ratikely to exist as undocumented machine code only. As an
of ascent illustrative assembly language we use a two-address instruc-

The Operational Flight Programexecuting on each Re-
mote Terminal will usually have a ‘cyclic executive’ archi-
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Label Op. Args. Comment
LOAD  A6004;, get previous altitude Q)
LOAD Cliyum load constant 1 (2)
READALT OUT @ start ADC conversion 3)
LOAD B3ium initialise busy-wait counter 4)
ADCDELAY SUB Bimm decrement busy-wait counter (5)
BRGT ADCDELAY iterate while counter exceeds zero (6)
IN B,Q read new altitude (in feet) from ADC )
SAVEALT STORE B004;: save new altitude (8)
SUB BA compute change in altitude (in feet) 9)
MULT  B20imm convert difference to feet per second (20)
SAVERATE STORE ,B01g;, store calculated ascent rate (12)

Fig. 3. Legacy assembly code for the Rate task

tion set for a simple processor with eight general-purpose reg- old
isters,A to H, and a comparison register which holds the re- machine code
sults of explicitCMPRnstructions, or the difference between
the last register update and zero [14, Ch. 7]. Direct and imme- old Old i/o
diate addressing modes are indicated by subscripts. We also processor devices
assume the existence of a set of memory-mapped input/output _
ports,P to W to interface with hardware devices. Fig. 4. Components of a legacy control system
The Rate task begins by fetching the altitude saved during
its previous invocation from memory locati@®0. Instruc- Commom-mo- :
tions 2 to 7 then read the altitude from the radar altimeter Oold : New sub- :
I o machine cod¢ |  routines |
through an Analog-to-Digital Converter. The task writ¢s * | [ _________.
to the ADC'’s control register, via output pd® to start the [Tt I'D' TTTTTmTmTTy
conversion. It must then wait at lea3 microseconds for ! e;gﬁf:tz(r’r !
the conversion to be completed. Assuming an instruction ex- H U
ecution time of5 microseconds, the task does this by busy- [Tttt F‘z‘ _I_'I: STttt
yvaiting at Iabe_zlApCDELA\(consuming 7 instruction cycles, E Opergﬁr;glg];stem E
including the initialLOAD. Instruction 7 then reads the new  «____________________.
altitude from the ADC’s data register, via input p@&tand FoTToTTTTT T oIt
instruction 8 saves it for the next invocation ' New 11 Newio
_ o | processor | | devices |
Instructions 9 and 10 then use the previous and currental- oo oo,
titude readings to calculate the ascent rate. The constant in the Fig. 5. Components of an emulated control system

MULTinstruction reflects the fact that the executive invokes
this task at a frequency of 20 hertz. Finally, instruction 11

saves the result in memory locatiéfil. (When invoked next, ew processor [9]. As shown in Fig. 4, a typical legacy con-

the Comm and Log tasks can thus access the current altituo{%:ol system consists of machine code executing directly on
and ascent rate from locatiofi80 and601, respectively.) Y 9 y

the old processor and interacting directly with input/output
devices. Introducing a processor emulator changes the archi-
tecture as shown in Fig. 5. The old program is now inter-
preted by the processor emulation software, which itself runs
on a standard Real-Time Operating System (RTOS). Proces-
After a Mission Computer System such as that describedsor emulators are available as commercial, off-the-shelf prod-
above has been in service for several years it becomes iructs [23], for specific legacy instruction sets.
creasingly difficult and expensive to maintain [7]. There is  However, despite the desire to reuse the legacy code with-
thus a strong incentive to replace obsolete processors in theut change, some adjustments are inevitable if an embedded
Remote Terminals with modern equivalents [8], but an oldcontrol program is to work correctly in a new hardware en-
Operational Flight Program will not execute on a new pro-vironment. To support this, emulators provide an Application
cessor with a different instruction set. Programming Interface (API) which allows programmers to
Processor emulation offers a potential solution by intro-associate software patches with particular instruction mem-
ducing an emulator program to interpret the legacy code on ary locations or input/output ports [34]. When the emulated

3 Processor Emulation
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void ReadAlt() /I patch linked to labéREADALT

{ int Altitude, Busy; 12)
WritelOPort(T, 1); / start ADC conversion (13)
do { Busy = ReadlOPor(); //wait while ADC busy 14)

} while Busy == 1, (15)

Altitude = ReadlOPort{); // read ADC data (in metres) (16)
Altitude = Altitude * 3.28;  // convert metres to feet a7
WriteRegB, Altitude); [/ put altitude (in feet) in registd (18)
UpdatelCEAVEALT); Il bypass legacy ADC code (29)
return; (20)

}

Fig. 6. New high-level language subroutine to read altimeter data

code reaches such a point, the emulator transfers control teystem could be extensively tested without any problems be-
a corresponding subroutine written in the emulator’'s nativeing detected.
high-level programming language. This subroutine may use However, consider the purpose of instruction 10 in Fig. 3.
API operations provided by the emulation package to acces$he legacy system’s programmer used const2fitih this
the new hardware architecture, or modify the legacy procesmultiplication on the assumption that the Rate task is invoked
sor’s (emulated) state. 20 times per second—any change to this frequency also re-
In our example, for instance, we will assume that theduires the corresponding arithmetic to be changed. If this is
outmoded altimeter and Analog-to-Digital Converter are re-not done in the ;ituation described above, the calculated.as—
placed as part of the hardware upgrade. This invalidates inS€Nt rate will be inaccurate by 25%. Thus legacy code which
structions 3 to 7 in Fig. 3 because this code is specific to thdS lime-sensitive, but not recognised as such, presents a sig-
original altimeter and ADC. We assume instead that the newificant danger. (To avoid this risk some emulation packages
ADC provides a ‘busy’ signal (with a known worst-case de- Provide a ‘speed matching’ option [23], even though its use
lay), as a more robust alternative to busy-waiting [33], and/astes available processor time.)

that the new altimeter is calibrated in metres, rather than feet. In this case a solution is to adq anqther patch, associated
with label SAVERATE as shown in Fig. 7. (New subrou-

ines are executedeforethe instruction at the correspond-
ing label [34], so the patch is called between instructions 10

with the new altimeter and ADC. It is called whenever the ;4 11 ) The new code simply increases the calculated ascent
emulated code reaches |aiEADALT Statement 13 starts a0 by 2504 to correct the distortion caused by the changed

the data conversion by writing to the new ADC’s control reg- frequency.

ister at output por_ﬂ'. State_ments 14 and 15 then wait while With the addition of these subroutines the upgraded Mis-
the ADC's busy signal at input polt equalsl [20, ,p. 400]. . sion Computer System’s programmer aims to achieve a be-
Statement 16 then reads the result from the ADC’s data regiss 5 iour equivalent to that of the original Rate task. The
ter via input portJ. Since the new altitude is in metres, rather challenge now is to convincingly verify that no unintended

than feet as expected by the legacy code, this value is cons,anges in behaviour have been introduced and that all nec-
verted to the appropriate units by statement 17. Statement 1(§ssary software patches have been made
puts the altitude in (emulated) registr Statement 19 then '

updates the (emulated) processor’s instruction counter, so that

control will bypass the legacy instructions for accessing thea Approach to Verifying Emulated Control Software
ADC, and will go to labelSAVEALT rather than back to

READALTwhen the subroutine returns. Our overall goal, therefore, is to formally prove that the em-
The need to introduce the software patch above was obulated legacy code provides the ‘same’ functional and timing
vious. More worrying are necessary changes that may béehaviour as it did when executed on the original processor.
overlooked when installing an emulator. For instance, asHowever, we already know that this wiibt be the case. The
sume now that the new processor generates timer interrupemulator will interpret instructions faster than the original
at a frequency of 25 hertz, rather than the legacy processorgrocessor [23], and the emulated program contains software
20 hertz. Because emulators can interpret instructions mucpatches to accommodate hardware changes. Thus the ‘equiv-
faster than they could be executed on the old processor [23Rlence’ to be proven is an approximate one that must accept
the legacy program may still execute ‘correctly’ in this situa- harmless differences.
tion, in the sense that each task still completes all of its nec-  (Ideally, it should be possible to show that both the legacy
essary computations within each frame. Indeed, the emulateand emulated systems satisfy the original system’s require-

To account for this change, the parameterless C++ su
routine in Fig. 6 uses emulator API operations to interface
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void SaveRate() /I patch linked to lab@AVERATE

{ int AscentRate; (21)
ReadRed8, AscentRate); /I get skewed ascent rate (22)
AscentRate = AscentRate * 1.25; // compensate for higher frame rate (23)
WriteRegB, AscentRate); /I put corrected ascent rate (24)
return; (25)

¥

Fig. 7. New high-level language subroutine to correct saved ascent rate

ments specification. However, adequate requirements docu-

mentation is unlikely to exist for a legacy control system, es- LOAD A600gi; ;

pecially if its behaviour was calibrated experimentally, or if LOAD Climm ;

it was modified substantially during its operational lifetime.) call;
Furthermore, fully verifying the equivalence of the two {int Altitude, Busy;

systems is impossible with contemporary proof technology. : (see Fig. 6)

Fig. 5 shows that the new system interposes both a propri- return;

etary processor emulator and a commercial Real-Time Oper- b

ating System between the legacy code and the new processor. STORE B600g;, ;

Verifying the correctness of these large-scale software com- SUBBA;

ponents is well beyond the capabilities of current formalisms. MULT B20irum :

As a compromise, we therefoassumehat the manufacturer call ;

of the emulation package can provide evidence that the emu- { int AscentRate;

lator has passed the original test suite for the legacy proces- . ,

sor’s instruction set, as is usually required in safety-critical : (see Fig. 7)

applications [23]. We alsassumehat the underlying RTOS , return;

is one intended for safety-critical applications and that its
manufacturer can thus provide evidence that its development
met relevant standards [4]. Although neither of these assump-
tions mean that the software has been formally verified cor-
rect, they give us sufficient confidence in the integrity of these
system components that we need not attempt to verify them

STORE B601gj,

Fig. 8. Behaviour of the emulated Rate task

ourselves, and can instead concentrate on comparing the tw® Modelling Legacy and Emulated code

versions of the Operational Flight Program.

(Interestingly, we may also usually assume that the legacyro prove any relationship between two programs we must
software has a ‘clean’ in-service history—any serious prob-irst give them a common semantic basis. This section intro-
lems with it will already have been detected and eliminatedduces a set of primitives for modelling program fragments,
during its operational lifetime—so we do not need to reasonand uses them to give a semantics to the legacy instructions
about the legacy code’s ‘correctness,” merely our ability toand emulator operations in our case study.

emulate its behaviour.)

Therefore, assuming that the emulator interprets legac¥ 1 Modelling Language Primitives

instructions correctly, our specific goal is to prove an (ap-
proximate) equivalence between the legacy assembly cod.?
(Fig. 3), and the legacy code augmented with hardware;
specific patches. Even this presents a challenge because

emulated program interleaves legacy assembly-level instruc-
tions and high-level language statements, as shown in Fig. %)
The closest analogy to this situation occurs in formalisms

he basic modelling language contains the following well-
nown primitives [10,1]. (Formally, they can all be given a
akest-precondition semantics as described in Appendix A,
ut it is not necessary to understand this underlying semantics
or the proof below.)

for modelling program compilation [27,32] or decompila- — An assumption[P], states that propert# is expected to

tion [6], where relationships between high and assembly- hold at this point in the program [1, p. 189]. Lét be
level programs are proven. Our model below therefore adapts a predicate on the state variables currently in scope. Intu-
various ideas from these formalisms, especially those used itively, an assumption is used to document conditions that
for reasoning about compilation of real-time programs [19, are expected to have been established by the program’s
25] since we need the ability to analyse time-sensitive code.  environment [1, p. 5].
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— An assertion{ P}, similarly states that predicafeis ex- Table 1.Semantics of legacy assembly code instructions
pepted to hold at the point V\{here_ It appears [1. p. 189]. In Instruction or | Equivalent modelling language
this case however, the condition is one which the program ;

. ) . basic blockS | statement
itself is obliged to make true [1, p. 4].
— A relational assignmenfv:= v’ | G], models assignment | LOAD?, Zimm

r,e, T = 2,2, T+ busg

of a valuev’, defined by predicaté;, to variablev [2, LOADr, aqiy rye,7:=m(a),m(a), T + 1049
primed value ¢"" which denotes variable’s value when SUBry., s T1,¢,T = T — P, — T2, T+ 5]

[
[

§4.7]. Predicate’ may refer to state variables and the | STORE-, ag;, [m,7:=m® {a > r},7+ 10us|
the assignment terminates. {
[

— Sequential compositiohS; ; S5, of two statements mod- SUBr, Zimm G TIST = 2,0 = 2, T 4 bus)
els execution of statemet; followed by execution of MULT?, Zimm TC Tk 2,k 2, T+ 10pus]
statemenb in the usual way [10, p. 137]. ‘S, Sy i S,

— Alocalvariable declaration‘var v : T'e S°, adds a fresh Sy’

\[/fns\bzlz%amedv of type T' to statemeng’s state space 7S fec X o (S [r=7+ 549 ;
' : . BRGTV s X)MN[e<

— A (demonic)nondeterministic choiceéS; M S’ denotes GTe ((le> 0} X) N e < 0)))
an arbitrary choice between statemessts and S, [1, ouTr,P [P, Pt 7=, P T+ 5us|
p. 189]. T < Pt/ < 7_/]

— A recursive statementrec X e S(X)’, denotes state- IN r,Q {P"=1AT—P'>30us};
ment.S(X) with a copy of itself substituted whenever [r,e,7:=Y,Y, T+ 5us

program-valued variabl& is encountered [1, Ch. 20].
Here S(X) is a compound statement in whick'* may
appear where a statement is normally expected. (For-
mally, the recursive statement denotes the least fixed pointegister;¢ be a label;z be an integer (representable on the
in the weakest-precondition ordering of programs.) legacy processor;be the comparison register; be the data

Each of these primitives serves a distinct purpose. Assertion@1€MOry arrayn be a data memory address;be a device-
and assumptions provide ways of interrogating the state varidePendent external input value; antie the current time.
ables. Assignments allow the state to be updated. Sequential 1he first group in Table 1 defines the effect of simple in-
composition allows statements to be constructed from subStructions, each of which can be modelled as a multiple as-
statements. Variable declarations allow the state space to bugnment. For instance, theOAD instruction with an imme-

extended. Choice coupled with recursion allows modelling ofdiate operand changes three variablesc andr. It sets both
iteration [1, p. 15]. registers- andc equal to integeg, and add$ microseconds

In particular, the relational assignment supports espeIO current timer, to account for the instruction’s execution
cially concise models of program fragments. We allow it to time. The other instructions follow similarly. Instructions that
be generalised to multiple simultaneous assignments, e.gACCESS memory or perform complex arithmetic are assumed
[v,w =", w' | G], in the usual way [, p. 156]. As a short- © take10 microseconds. Data memony is represented as a
hand we also allow the predicate part to be omitted when it igunction from addresses to values. In B3 OREdefinition,
trivial. Let £ be an expression on (unprimed) state variablegunctional overridingn @ {a — r} denotes functiom: with
which is type-compatible with variable domain element mapped to value [31, p. 128].

The next two groups in Table 1 define the behaviour of
[v:=F] Ew:=v|v = E] two commonly-occurring patterns of instructions. The first

, . simply reminds us that vertically displayed blocks of assem-
We also allow both of these representations to be freely mlxeqﬂy instructions are interpreted as being sequentially com-

in multiple assignments. posed (provided that the sequence does not contain branches,
or labels that are the targets of branches). By giving a mean-
5.2 Legacy Instruction Semantics ing to particular control-flow patterns in this way, we avoid

the need to explicitly model the legacy processor’s instruc-

Using this modelling language, Table 1 defines the meaningdion counter [12].
of assembly instructions as executed on the legacy processor. The next pattern consists of a basic blgt;kabelled by,
This is done by describing the effect of each instruction onwhich is followed by a conditional brancBRGTto 4. In ef-
the legacy processor’s state, which consists here of generalect, this is a loop which performs one or more instances of
purpose registers, the special comparison register, and daldock S, terminating when the comparison registeis not
memory. As in previous real-time formalisms [15,16], we positive. Modelling such patterns as a unit avoids the chal-
also explicitly model the current time by a special variable, lenging problem of defining a separate semantics for branch

In Table 1 letS be a basic block of instructions in our instructions. (In the past this has been done by introducing
assembly language that does not contain branch instructioren explicit interpreter of instruction sequences [27,25], or by
or labels that are the targets of branch instructionsp a  addinggoto statements to the modelling language [32,5].)
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The semantics on the right uses the recursion primitive to Table 2. Semantics of emulator operations and statements
model |terat|qn. Basic block is followed by an assignment Operation or Equivalent modelling language
that adds> microseconds to the current time, to model the

) ; . statements statement
overhead of performing thdRGT instruction at the end of —
each iteration. This is followed by a choice between two state{ v = £ [v,7:=E,7+ D"pus
ments containing complementary assumptions (which makes { int v; S; } varv:Ze ([r:=7+ D%ug; S ;
the choice deterministic). If comparison registeis posi- [7:=7+ D%pus))
tive the left-hand alternative is followed, and the whatec' Sy: S, Sy 0 S,

statement recurs. Hf is not positive then the recursive state-
ment terminates. Similar definitions can be given for other
branching or iterative patterns of instructions [12].
The final group in Table 1 defines the meaning of in- | call [
put/output instructions for two specific memory-mapped i/0 | (eturn [
ports. Since the properties of external devices are essentig
for reasoning about the behaviour of an embedded program, ReéadRegt, v) [v,7:= 7,7+ 1ps]
[
[
[

do{S}while B |recXe(S;[r:=7+Dug;
(([B]; X) M [=B]))

T =7+ 4us
=7+ 4usg

T

we model important device characteristics in the semantics of WriteReg(, v) rye, 7= 0,0, 7+ 1us

the instructions that access the devices. Inspired by the Tem- UpdatelC() T:=7+ lus

poral Agent Model [28], each output paxtis modelled by ; ot _ 4

two variablesX”, which denotes the value currently stored in writeloport(r, z) | [T ;TT;,T; Z,]’ T 7+ 2us|
T S

the port’s location, an&®, which is a timestamp holding the
time at which this value last changed. The latter variable is an v = ReadlOPorl) | {T" =1} ;

auxiliary one—it cannot be accessed by the executable code, [v,7 =0, 7 +2us|

but is used to reason about time-sensitive behaviours. ((r = T' < 10us) = v =1) A
Thus, instruction OUTr, P’ in Table 1 writes the value ((r =T > 10ps) = v' = 0)]

in registerr to the ADC.’s control register, and takésmi- v =ReadlOPort) | {T* =1 A7 —Tt > 10us};

croseconds to do so. TimestarRptells us that the register [v,7 = Z,T + 2us]

will be updated after the instruction’s starting timgbut no
later than its finishing time’ (i.e., 7 + 5us), although we do
not know here exactly when in this interval the update will
be completed. This shows how relational assignments can behe only difference is that emulated instructions will execute
used to model nondeterministic behaviour. faster [23]. Thus the emulated semantics for simple assem-
Finally, the IN r, Q instruction reads from the ADC’s ply instructions is the same as that shown in the first group in
data register and is modelled by two primitives. The initial Taple 1, except that we assume flnicrosecond execution
assertion accounts for the time required for the ADC to pertimes are replaced ymicroseconds, and alb microsecond
form the conversion. It obliges the programmer to ensure thagxecution times are replaced tynicroseconds.
value ‘1’ was written to control registeP at least30 mi- The semantics for other emulator operations is shown in
croseconds ago. If so, the following assignment sets registaple 2. LetS be a (compound) statement in the emulator’s
terr (andc) equal to some valuk produced by the external Ap| language (C++ here); be a high-level language vari-
environment. In our case Study this value represents an a|t|ab|e, ¢ be an assemb|y |anguage |abe|be a |egacy pro-
tude reading produced by the legacy system’s radar altimetegessor register; be an integer¥ be a high-level language
Since external inputs are beyond the control of the Operagxpression3 be a boolean-valued expressid»* be a non-
tional Flight Program, we cannot predict what values theynegative duration in microseconds whose magnitude depends

denote and must model them symbolically. on language construét's structure;Z be a device-dependent
external input value; and be the current time.
5.3 Emulated Statement Semantics The first group in Table 2 consists of C++ statements for

assignment, declaring an integer, sequential composition and

To define the meaning of emulated code we need to defindo-while iteration, as used in API subroutines. Their seman-
a semantics for all the operations performed by the procestics follows that of other real-time formalisms [15]. The as-
sor emulator, including emulated legacy instructions, Appli- signment statement’s execution time is represented symbol-
cation Programming Interface subroutines, and actions of thécally by a durationD¥ whose value depends on the struc-
emulator itself. Since the emulator maintains its own repreture of expressiont. Ways of predicting execution times
sentation of the legacy processor’s state, these operations céor high-level language statements and expressions, based on
be defined with respect to this state, together with locally-their syntactic structure, have been well explored in the real-
scoped high-level language variables. time literature [30]. (However, this approach produces dif-

We have assumed that the emulator interprets instrucferent results depending on which compiler code generation
tions correctly, so emulated instructions will have the samestrategies and optimisations are anticipated. Therefore, such
functional behaviour as they did on the original processoran analysis may produce a range of possible durations for
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D¥, from the best to the worst-case execution time. In thistics to characterise the behaviour of the whole legacy and
situation the equivalence proof below should be checked foemulated tasks. This section presents a number of algebraic
each such value.) laws for calculating the semantics of program fragments, uses
Similarly in the do-while semantics, duratiod? de-  them to determine the semantics of the two tasks, and then
notes the time required to evaluate expresdioand branch  compares the results.
accordingly. Otherwise the definition is similar to that for the
BRGTloop in Table 1. 6.1 Reasoning Laws
The high-level language variable block includes a timing
overhead before and after the enclosed statement to respefr. semantics above makes extensive use of (multi-

tively ?Ilocate a}nd clieallocate sEage for the newgggeclareqjle' demonically-nondeterministic) relational assignments to

Va”qb e.In T"_"b € 2 [eZ denote the integer type, a _be model atomic actions. In our example programs these actions
the time required to (de)allocate stack space for a variable 0f .o composed sequentially, or in loops and declarative blocks.
this type. Therefore, to calculate the semantics of the tasks, we need

[The ‘call’and ‘retum’ operations in Table 2 representthe |5,q tor combining relational assignments via these construc-
actions taken by the emulator to respectively transfer contro{Ors

to and from a parameterless Application Programming Inter- fhe following laws are the main ones used in the proof

face subroutine. These operatio_ns do not change the emula%%low‘ They are based on well-known principles from the

legacy processor’s state, so thew only impact on our model 'Sprogram refinement’ literature [29,24] but we have reex-

thed mlcrqsecond d_elay they |r_|troduce. ) _, . pressed them in relational assignment [2] form. (They can
The third group in Tgble_ 2 includes opgratlons prowdeda” be proven using the semantics in Appendix A.) For clarity

by the emulator's Application Programming Interface for y,qoy are shown for single-variable assignments only, but the

modifying the (emulated) Iggacy processor’s statg. The f'rsbrinciples extend readily to multiple assignments.

two allow the value of a high-level language variabldo The first law states that an assumption before a relational

be read from and written to a legacy processor registes-  ,qqjgnment can be absorbed into the assignment. Piisa
spectively. The ‘UpdatelC’ operation updates the (emUIated}aredicate on the state space a#ids a predicate on the state
instruction counter. However, since we have avoided mod-

i ) . L space that can additionally refer to final vale
elling the legacy instruction counter explicitly [12], the only
effect of the operation here islamicrosecond delay. Law 1 (Preceding assumption)

The final group of emulator operations in Table 2 are spe- oy oy

cific to the new Analog-to-Digital Converter. The first writes [Pl v=v |Gl =[v=2v| PAG]
an integer to the ADC's control register at output pbrirhe In a complementary situation, an assertion following an
operation as modelled simply stores the value, and takis  assignment can be eliminated if we are certain that the as-
croseconds to do so. In reality, however, this operation alsgignment will establish the assertion [24, p. 66]. IRt /v]

affects the hardware device itself, causing it to perform anpe predicaté® with all free occurrences of variableeplaced
action whose outcome is observable later. In our model, theyy term¢ [24, §A.2.1].

effects of this action are described in the next two operations . .
in the table, which read from the device. Law 2 (Succeeding assertion)
The first reads the ADC's busy signal, from input pdrt [vi=v' | G AP jo]]; {P)
The initial assertion obliges us to ensure that the control reg- o, ,
ister at portT has previously been assigned valueé If so, =[v=v" | GAPR/Y]

then the statement’s outcome depends on how much time has The next two laws show how consecutive assignments can
elapsed since poff was updated. Within0 microseconds pe merged. The first applies to two assignments to the same
of this time the busy signal reads'. After this time it re-  variable. Let; and H be predicates on the state space which
turns 0", indicating that it is now safe to read from the data may refer to final value’. Let ‘v P’ and ‘Jv e P’ de-
register. The second operation reads from the ADC's data reghote universal and existential quantification of variabterer

ister at input port). The assertion says that we are obliged to predicateP, respectively.

ensure that at lead microseconds have elapsed sinte * ] ]

was written to the control register at pdit If so, the oper- Law 3 (Assignments to same variable)

ation reads an application-specific external input vaiuén [vi=v' | G]; v:=2 | H]

our case study? denotes an altitude produced by the new

radar altimeter. =[v:=0v" | (W e G Jv'] = (v e« H[v" /v])) A

(30" o Gl Jv'] A H[v" /0))]

On the right-hand side”’ represents an intermediate value of
variablev, between the two assignments on the left. (Vari-
ablesv andv’ on the right denote’s value before and after
Having given a meaning to basic legacy instructions and emthe whole assignment in the usual way). There are two con-
ulator operations above, we now want to apply these semarjuncts in the right-hand statement’s predicate part [29]. The

6 Equivalence of the Legacy and Emulated Tasks
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first ensures that given any value @fproduced by the first 6.2 Semantics of the Legacy Task

statement on the left-hand side that the second statement on

the left can perform a computation. Otherwise, the first stateyye now want to calculate the meaning of the legacy code
ment on the left could leavein a state from Wh'ch the'sect- fragment in Fig. 3 using the semantics in Section 5.2 and the
ond statement could never succeed. (Although |nt|m|dat|ng1aWS in Section 6.1. Firstly, however, we must decide how to
this condition is satisfied trivially throughout the proof below model external inputs, i.e., valug™ in Table 1. Since these

because none of our atomic statements has significant Palues are sampled from the external environment, the Rate

cpnditions for sgccessful execgtion.) The secon.d conjunct (_jet'ask makes no particular assumptions about them. Therefore,
fines the behaviour of the assignment on the right-hand S|dgve merely denote the altitude sampled by tfénvocation
to be the combined behaviour of the two assignments on th%f the legacy Rate task by symbolic constant

left, with predicateG’s final value for variables unified with Also, we must consider the state in which the code frag-

Hslm'tt;]al value fofrv. i . s to distinct .ment of interest begins. Again, this is application-specific.
n the case of conseculive assignments 1o AISUNCL vallry o pate task's only assumption about the initial system state
ablesv andw the law is essentially the same. Heltkis a

. . : . is that the altitude sampled during its previous invocation
predicate on the state space in which variables,’ andv’ P g p

f butot v. This is b the left-hand must be available in memory locati®00. (A dummy value
may appear Iree, v. TNIS IS because, on the 1et-hand 4 sqmed to have been stored in this location before the Rate
side, the original value ofi before the first assignment is

i ivle by th q i + THarl H th task’s first invocation by the Operational Flight Program’s
nof aC(t:eSSI 'ebl y, € Isec%n t\;sagphmetn b uts initialisation code [13].) Therefore, we introduce an assump-
refers lo varable’s vaiue between the two assignments on i, 1, gocument this requirement of the task’s environment.
the left, which is also its final value in the combined assign-

ment on the right. (On the left-hand sid€v/v’] is thus a
predicate in which only variablewr may appear in primed
form, as usual.)

[m(600) = A,_1] (26)

For convenience, we also introduce an assumption that the

Law 4 (Assignments to different variables) starting timer of the legacy (and emulated) task is zero.

[vi=0v' | G [w:=w' | H[v/v']] [T =0] @7)

_ — / / i !
= [w=v,w' | (W' e G = (3w’ e H)) NG AH] This assumption is not essential, but it simplifies the arith-

metic during the calculations below.

Since our definition of iteration makes use of a nondeter- h he | ¢ . . fth
ministic choice operator, it is also convenient to have a law Thus, the legacy code fragment of interest consists of the

that shows how choices between relational assignments cairduence of instructions in Fig. 3 preceded by the two as-

be combined [29]. Letz and H be predicates on the state sumptions above. Our goal is to use the semantics in Table 1
space in which’ may appear free and the laws in Section 6.1 to calculate the semantics of the

whole task. We begin by combining the assumptions above
Law 5 (Choice between assignments to same variable) with the semantics of the initidlOADinstruction.

[vi=v" |GNvi=v"| H (assumption 26) (assumption 27) (instruction 1)
== | (3 eG)A (T e H)AN(GV H)] = ‘by Table 1 and Law 1 (twice)’
[A ¢, 7 :=m(600), m(600), 7 + 10us |

The first two conjuncts in the predicate on the right-hand side m(600) = A;_y AT = 0]

ensure that both alternatives lead to executable computations.

The final conjunct simply defines the effect of the combined = [Ac,m= A1, Ai1,10ps |

statement to be that of either alternative [29]. m(600) = A;_1 AT = 0]
Finally, the following law shows how an initialised vari- = '‘by Law 1’

able block can be introduced. Its proviso avoids name clashes [m(600) = A;_y AT =0];

with existing variables. LeE’ be an expression of typgg. A e, 7= Ay1, Av1, 1048 (28)

Law 6 (Introduce fresh variable) ! ) ,
In the final step we separated the assumptions again because
[v:=v"|G] they are not needed any further below.
This result can then be combined with the next three
instructions straightforwardly. The secoh@®ADinstruction
simply updates registes.

= ‘providedw does not appear free it
varw: Te ([w:=E]; [vi=2v"]G])

On the right the second assignment makes no use of vari-
ablew, but Law 4 above can then be applied to merge the
two assignments inside thedr’ declaration, and thus allow = ‘by Table 1 and Laws 3 and 4’

variablev’s final value to be defined in terms of. [A,Cec,mi=A;-1,1,1,15u9 (29)

(statement 28) (instruction 2)
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The OUTinstruction at labeREADALTwrites to portP and = 'by Law 3
in doing so introduces a nondeterministically-defined time- (statement 33)
stamp.

(statement 29) (instruction 3) (Indeed, it is the only fixed point because the loop in question
) , is deterministic and terminates from any given starting state.)
= ‘by Table 1 and Laws 3 and 4 When applying Law 5 above we treated assumpfiokt 0]
[A,C,P",P',c,7:= A;_1,1,1,P",1,20us| (30)  asavacuous assignméBtc, 7 := B, ¢, 7 | ¢ < 0].
15us < P! < 208 This semantics for the loop can then be combined with

The next_OADinstruction then puts a constant in regigger ~ that of the preceding instructions.

(statement 30) (instruction 4) (statement 31) (statement 33)

= ‘by Table 1 and Laws 3 and 4’ = ‘by Law 3’
[A,B,C,P". P c,7:= A;_1,3,1,1,P" 3,25us| (31) [A,B,C,P", P! ¢,7:= A;_1,0,1,1,P" 0,55us| (34)
15us < P < 20ps| 15us < P < 20pus]

At this point we encounter the busy-wait loop at label
ADCDELAY With respect to the semantics in Table 1, we
first combine theSUBinstruction in the loop body with the
delay introduced by th8RGTinstruction, to determine the
semantics of a single iteration.

In particular, statement 31's assignment3ab registerB is
used in the above step to simplify theéin andmax expres-
sions in statement 33. In effect, it tells us that the loop body
is executed exactly 3 times.
Instruction 7 then reads a value from input pQrRecall
(instruction 5); [7:= 7 + 5us| from Table 1 that its semantics represents this symbolically
= ‘by Table 1 and Law 3’ as Y. Here we instantiate this v‘githAZ-’, to denote the al-
. titude sampled in the Rate task's invocation. ThelN in-
[B.e7:=B-1LB—1,7+10p9 (32) struction’s semantics also has a preceding assertion. This is
From Table 1 we therefore have the following semantics foreliminated in the first step below since the preceding state-
the two instructions at labélDCDELAY ment guarantees that the requirement is satisfied.
rec X o ((statement 32) (([c > 0] ; X) M e < 0])) (statement 34 (instruction 7)
The semantics of this whole construct is a statemd&mthich = ‘by Table 1 and Law 2’
makes the statement inside thec' construct equak’. Based
on our understanding of the code’s behaviour, we propose the
following statement for this purpose.

(statement 34)
[B, e, = Ay Ay, T+ 5MS]

. . ='by Law 3’
[B7 C,T:: mln(B— 1,0),111111(8— 1,0), (33) [A, B7 C7 Pv7Pt,C,T = (35)
7 + max(1, B) x 10u9] Aiy A 1 1P A 6045 |
To understand this, consider that there are two possible be- 15us < P < 208

haviours for each iteration of the loop at la#®dDCDELAY

In the case where the loop condition is already satisfied we Although the remaining four instructions complicate the
decrement registeB, taking 10 microseconds to do so, and expressions, they are all straightforward state updates. The
then exit. This is defined by the first argument in thed’ STOREinstruction at labeSAVEALTupdates the memory
and ‘max’ operators above. In the second, recursive case, warraym.

still do the same decrement, but then loop back to repeat the

process. This will ultimately result in registBrbeing decre- (statement 35) (instruction 8)
mented until it reaches zero, and will taBel0-microsecond = ‘by Table 1 and Laws 3 and 4’
iterations to do so. This is defined by the second argument in IA,B,C,P", P!, m, ¢, 7= (36)

the ‘min’ and ‘max’ operators above.
We can confirm that this statement is a suitable fixed point
of the recursive construct as follows.

A1, A 1,1, P m @ {600 — A;}, Ay, T0us |
15us < Pt < 2018

(statement 32) The next two instructions perform arithmetic on regi®er

(([e > 0] ; (statement 33)11 [¢ < 0])
='by Laws 1 and 5’

[B,c,7:=B—1,B—1,7+ 10us ;

(statement 36) (instruction 9); (instruction 10)
= ‘by Table 1 and Laws 3 and 4’

[B7 C, T .= B/, CI,TI | [A7 Bu Cv Pv? Pt7m7c77— = (37)
/
(¢>0AB =min(B—1,0) A Ai1, (A — Ai—1) %20,1,1,P",
¢ =B A7 =7+ max(1,B) * 10us) V m @ {600 — A;}, (A; — A;—1) % 20,85us |

(c<OAB =BAd =cAT =7)] 15us < P! < 20ps]
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Finally, the last instruction makes a further update to datamost deeply nested construct and work outwards. We there-
memory. fore begin with the loop body and determine the semantics
of a single occurrence of i/o statement 14 followed by the

(statement 37) (instruction 11) overhead of evaluating the loop condition and branching. We

= 'by Table 1 and Law 3’ assume that it takes the emulatbmicroseconds to evalu-
[A,B,C P’ P! m,c,7:= (38) ate expression ‘Busy == 1" and branch accordingly. As men-
A1, (Aj — A1) %20,1,1,P, tioned above, this duration could be established through static
m @ {600 — A;, 601 — (A; — A;_1) * 20}, analysis techniques [30].

(AL — Ai—l) * 20,95us |

statement 14) [ .= 7 + 2us
15us < P < 208 ( | Hs

= ‘by Table 2 and Law 3’

Statement 38 thus defines the semantics of the legacy (Tv =11; (41)
code in Fig. 3. In particular, it tells us that the Rate task stores [Busy, 7 := Busy, 7 + 4us |
sampled altituded; in memory locatior600, and the calcu- ((r' — Tt < 14ps) = Busy = 1) A
lated rate of ascent in locati@®1. This rate is the difference ((r' — Tt > 14ps) = Busy = 0)])

between the currenfl; and previousA4; ; altitudes multi- _ _ .
plied by 20. Finally, the legacy task’s end-to-end execution The ‘ReadlOPor)" operation has a preceding assertion
time is95 microseconds. which we must retain until it can proven to hold. For clar-

ity below we have also reexpressed the predicate in terms of
the finishing timer’, rather than the starting time
From the definition oflo-while loops in Table 2 we there-

. fore have the following semantics for iterative statement 15.
In the emulated system, the Rate task consists of a sequen 9

. . . . df\?\/e use mathematical, rather than C++, notation for expres-
of (interpreted) legacy instructions, emulator actions, an

API subroutines, as shown in Fig. 8. Having defined the Se_s|ons In the semantics.)

mantics of all of these operations above, we can determine rec X e ((statement 41)
the semantics of the emulated Rate task in much the same (([Busy=1]; X) 1 [Busy# 1]))
way as we did for the legacy task in Section 6.2.

Again, we model the external input valdg in Table 2
symbolically. Let the altitude sampled in ti&invocation of
the ‘emulated’ task be represented by symbolic constant

6.3 Semantics of the Emulated Task

In this case we propose the following statement for the loop’s
fixed point. LetN; denote the positive natural numbers (ex-
cluding zero).

(This value does not necessarily bear any relation to con- {Tv =1}, (42)
stantA; in Section 6.2.) As we will see, the emulated system [Busy, 7 := 0, min{u | u — T* > 14us A
multiplies altitude samples 3,28, to convert them from me- (3n Ny eu=171+nx*4us)}])

tres to feet, so the emulated task’s assumption about the value ) ) ) )
stored in memory locatiofi00 by its previous invocation is The whole loop retains the preceding assertion stating that
as follows. control registefT has previously been assigned valuelhe

B loop finishes only when variable ‘Busy’ equals zero. The
[m(600) = A;_1  3.28] (39)  timer isincreased by-microsecond increments (i.e., the ex-

Our goal is thus to calculate the semantics of the sequenc%cunon time of the loop body, statement 41) until it exceeds

13 i 1 -
of ‘mixed language’ operations in Fig. 8. We begin by com- timestampT* by 14 microseconds (rather thai) microsec

bining the semantics of the first two assembly instruc:tionsOnds because themicrosecond loop body will be executed

X . oo even if the loop is reached after the end of the ADOX%s
with that of our overall assumptions. Keep in mind through- "~ .
) ) ) - ! ._microsecond busy interval).
out this section that we assume ‘emulated’ instructions are in- - ; . .
We can confirm that this statement is indeed a suitable

terpreted faster than instructions executed on the legacy pros ; :
. L : ixed point of the recursive construct above as follows.
cessor, and that alk-microsecond execution times in Table 1

are thus replaced ' microseconds and all0-microsecond (statement 41)
execution times are replaced bynicroseconds. (([Busy= 1] ; (statement 42)11 [Busy # 1])
(assumption 39) (assumption 27) = ‘by removing the redundant assertion and Law 1’
(emulated instruction 1)(emulated instruction 2) (statement 41)
— ‘by Table 1 and Law 1’ ((Busy,7:=0,min{u | ---} | Busy= 1] 1
[m(600) = A;_1 #3.28 A7 = 0] ; ‘tEB“LSy#S,lD
IAC e, = A,y #3.28,1,1,6u8 (40) = yLaw
(statement 41)
We then encounter a call to the subroutine in Fig. 6, which [Busy, 7 := Busy, 7" |
contains a loop, nested within a local variable block. To cal- (Busy=1ABusy =0A 7 =min{u|---})V

culate the semantics of the whole subroutine we begin at the (Busy# 1 A Busy = BusyA 7/ = 7)]
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= 'by Law 3 = 'by Table 2 and Laws 3 and 4’
(statement 42) [Altitude, Busy, B, TV, T ¢, 7 := (45)
o > L,
In the first step we eliminated assertiffi’ = 1} from state- A;%3.28,0, A; +3.28,1,T", A; + 3.28, 7 + 28y |

ment 42 because this assertion already appears in state- 7 < T < T+ 2ps]
ment 41 and none of the intervening statements updétes
(Although we have not presented a law for handling this spex
cific situation, itis an application of the principles of propaga-
tion of assertions through compound statement$28,3].)
In the second step we treated assumptiBusy # 1] as a
vacuous assignment.

The loop semantics can then be combined with that ofthe  var Altitude, Busy: Z e
first statement in the subroutine which writes to the ADC'’s ([r:=7 +4us ; (statement 45) [7 := 7 + 4us])
control register at pofT. In particular, this knowledge allows
us to elimate the assertion concernifig and to determine
the number of iterations.

This defines the behaviour of statements 13 to 20 in
ig. 6. We now incorporate this result into the definition of
declarative block 12. With respect to the semantics in Table 2,
we assume that it tak@smicroseconds for the emulator to al-
locate or deallocate space for each integer-valued variable.

= 'by Law 3’

var Altitude, Busy: Z e
[Altitude, Busy, B, TV, Tt ¢, 7 :=

(statement 13) (statement 42) A;%3.28,0,4; % 3.28,1, T A; % 3.28, 7 + 36us |
= ‘by Table 2 and Law 2’ T4 4us < TV < 7+ 6us|

[T, T 7= 1,Tt/,T+2uS\ r< TV <75 = ‘by Law 4’

[Busy, 7 := 0, min{u [ u —T* > 14usA var Altitude, Busy: Z e

(3n:Nyeu=r7+nx*4dus)} ([Altitude, Busy:= A; * 3.28,0] ;

= ‘by Laws 3 and 4’ B, T, T ¢, 7=

[Busy, T*,Tt,7:= 0,1, T, 7/ | A;%3.28,1, T A, % 3.28, 7 + 36pus |

r<T' <74 2usA T4+ 4us < TV < 7+ 6pu8)

7" =min{u | u—T" > 14usA = ‘by Law 6'

(3n:Nyeu=7+4+2us+ nx*4us)}| B, T, T!,c, 7= (46)

= [Busy, T%, Tt,7:= 0,1, T, 7 + 18us| (43) A, +3.28,1, T, A, % 3.28, 7 + 365 |

< TV <714 2u8 T4+4us < TV <7 +6u8

The final step recognises that the only possible value for thg,, ihe final step the locally-scoped high-level language vari-
number of times: that the loop body is performed is 4. Thus ables are eliminated.

we have determined the number of iterations from the dura- By preceding this statement with the overhead of the

tion of the loop body and the ADC's busy signal. . ‘call’ statement we obtain the complete semantics of the first
This result can be combined with the next statement in thesubroutine call in Fig. 8.

subroutine. Statement 16 reads from the ADC'’s data dort

In this case we assume the application-specific input value call ; (statement 46)
ilj Table 2 denotes the altitude sampled from thg new radar al- = ‘by Table 2 and Law 3’
timeter hardware, here represented by symbolic congtant B Tv T . 47)
Table 2 also tells us that this statement has an initial asser- [Z’ 16T " i
tion requiring 1’ to have been written to control regist@r i % 3.28, 1’2: , A % 3.28, 7+ 40us |
at least10 microseconds ago. Fortunately, preceding state- T+ 8us<T" <7+ 1049
ment 43 immediately satisfies this. This block can then be placed in the context of the pre-
(statement 43) (statement 16) ceding and succeeding assembler instructions. (Again, keep
— ‘by Table 2 and Law 2’ in mind the faster execution times for emulated instructions.)
[Busy, T”,Tt» 7:=0,1, T, 7 + 18us| (statement 40) (statement 47)
T<TV <7428, (emulated instructions 8 to 10)
[Altitude, T := A;, T + 28] = ‘by Table 1 and Laws 3 and 4’
= ‘by Laws 3 and 4’ [A, B,C T, Tt, m, e, 1= (48)
[Altitude, Busy, T, T, 7 := (44) A1 %328, (A; —A;_1) % 3.28%20,1,1, T,
A;,0,1, T 7+ 20us| m & {600 — A; * 3.28},
< T <7 42u8 (A; — A;_1) % 3.28 % 20,568 |
/
The remaining four statements within the subroutine are 14ps < T < 16ps)

semantically all simple state updates. We then encounter the second subroutine call in Fig. 8

(statement 44) (statements 17 to 20) and again calculate its semantics ‘inside out.’ The four state-
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ments inside the variable block are simple state updates. Overall, the Rate task’s functional behaviour is preserved.
The semantics show that both versions update memory loca-
(statements 22 to 25) tions600 and601 (and general-purpose registéxsB andC,
= ‘by Table 2 and Laws 3 and 4’ and the comparison registe). The legacy task writes to
[AscentRateB, c, 7 := Bx 1.25 B 1.25, (49)  POrtP, whereas the emulated one uses porbout this is
B 1.25,7 + Sug explained by the replacement of the Analog-to-Digital Con-

verter. Also, recalling that the old altimeter was calibrated in
As we did for the first subroutine, we can then add the overfeet, while the new one produces readings in metres, explains
heads of allocating and deallocating space for variable ‘Asthe way that the emulated task scales all altimeter readings

centRate’, and then hide the local variable entirely. by 3.28, to maintain consistency with the legacy code. (No-
tably, the altitude stored by the emulated task in locatiah
var AscentRate Z o is measured in feet, so that other tasks accessing this value are
([r:=7+2pus|; (statement 49) [7 := 7 + 2us]) not impacted by the changes to the Rate task. Similarly, for
= 'by Laws 3,4 and €' the ascent rate stored by the emulated task in loc&tiar)
[B,c,7:=Bx1.25,B*1.25, 7 + 1249 (50) With regard to instruction execution speeds, the most ob-

vious difference is that the legacy Rate task taigami-
Adding the overhead of theall statement then completes the croseconds where the emulated one takes o6ily{owever,
semantics of the second subroutine call in Fig. 8. The resulafastertask execution time is (usually) acceptable in cyclic-

clearly matches the intention of this simple subroutine. executive scheduling because it makes it easier for the task
invocations to fit into their frame. (Curiously, this ‘improve-
call; (statement 50) ment’ can change the behaviour of some systems by allow-
= ‘by Table 2 and Law 3’ ing tasks that previously always overran the frame to run to

B,c,7:=Bx1.25,B1.25,7 + 1649 (51) complgtion.) More importantly, we must_beware of.task code
that relies for its correctness on instruction execution speeds.
Finally, we can put this statement in the context of the pre-The busy-wait loop at labeADCDELAYin Fig. 3 has this
ceding code and the remaining emulated instruction to comcharacteristic but, in this case, the programmer has correctly

plete the semantics of the emulated task. patched the code with the subroutine in Fig. 6. The semantics
show that both versions of the task successfully sample alti-
(statement 48) (statement 51) tudes from their respective ADCs, when the specific timing
(emulated instruction 11) characteristics of the hardware interface are included. (The
= ‘by Table 1 and Law 3’ timestamps associated with output pdetandT also reveal
IAB,CT", Tt m, ¢, 7= (52) that the two versions of the task access their ADCs at differ-

ent times, relative to the task’s starting time, but the absolute
timing of i/o0 eventsawithin a task invocation is usually unim-
portant in a cyclic executive design.)

Finally, we must consider code that depends on the fre-
quency of task invocations. Typically, the programmer of
a periodic task relies on the task being invoked regularly
(with as little ‘jitter’, i.e., variation between successive in-

In particular, this result tells us that memory locatii con- vocations, as possible) but tiadsolutetiming of frames is

tains the sampled altitude (converted from metres to feet) an%fn'mﬁ_o rtgntt\.NGenerallyiti pgzklng, thle(rjebls '?ho dlefmablte rila—
location601 contains the difference between the last two alti- "O"S1P DEween an altiiude; Sampled Dy the legacy tas

tude samples (converted to feet) multiplied2sy The overall and the corr.espondmg altitudé; sampled by the emulateq
execution time of the emulated taskrig microseconds. task. (Even if the two systems were started at the same time,

the different task frequencies would mean that these two
values are unrelated.) Wha meaningful in this applica-
6.4 Comparison of the Legacy and Emulated Semantics  tion, however, is the difference betweemnsecutiveamples.
Thus, expression4; — A;_1) = 20" in the legacy task’s se-
Statements 38 and 52 confirm that the legacy and emulateghantics denotes the change in altitude in one second. The
Rate tasks doot have precisely the same behaviour. There-corresponding expression in the emulated task’s semantics,
fore, the change impact analysis must be completed by jus-(A; — A;_1) 20 % 1.25’, is meant to denote the same value.
tifying the differences in the light of the Mission Computer To allow for the fact that minor cycles af# milliseconds
System’s hardware upgrade. In particular, the major concern®ng in the legacy system but onli) milliseconds long in
for code in a multi-tasking Operational Flight Program are:the emulated system, the emulated task correctly scales the
the task’s functional behaviour; code that is dependent on inmeasurement b%% = 1.25.
struction execution speeds; and code that depends on the fre- We have now accounted for all the significant differences
guency of task invocations. between the legacy and emulated semantics and can thus con-

Zi,1 * 328, (Zl - Zifl) * 3.28 x 20 * 1257
1,1, T,
m @ {600 — A, x 3.28,

601 — (A; — A;_1) % 3.28 % 20 x 1.25},
(A; — A;_1) % 3.28 %20 % 1.25, 768 |
14us < T < 16pus|
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clude that the emulated system is indeed a satisfactory re-5.

placement for the legacy one.

6.

7 Conclusion

. .. 7.
Changes to safety and mission-critical control systems must

be made with utmost care. Ideally, therefore, formal tech-
nigues should be used for change impact analyses of control
systems reimplemented using processor emulation. We have
shown how this can be done by pragmatically combining se-

mantic modelling with an intuitive understanding of the old 9.

and new software architectures.

In particular, we identified an elegant modelling notation 10.

based on relational assignments, defined a common seman-

tics for actions of both the legacy and emulated systems 1.

terms of the legacy processor’s state, modelled essential tim-
ing properties via a special time variable, captured impor-
tant features of external hardware devices in the semantics

of the statements that access them, and formally calculatet?

the semantics of both the old and new software. The impact
of the software upgrade on the system’s behaviour was thus
clearly revealed, potentially alerting the programmer to unan-

ticipated side effects, and providing an opportunity to justify 13

any differences in terms of the specific application.
In current research we are investigating ways in which
the theory described in this paper can be made more acces-

sible to practising programmers. For instance, a significant4.

issue is how the program code that needs to be modified in

response to hardware changes can be identified. We have &al>-

ready achieved promising results through dimensional analy-
sis, using compiler-like type inference, to allow statements!®

whose units of measurement have been invalidated by the
hardware change to be identified automatically.

18.
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the least fixed point of the statement must do so.

The only uncommon statement in Table 3 is the relational

Section 5.1 above introduced several well-known primitivesassignmentfv := v’ | G]. Here we use the ‘strict’ form [2,

for modelling programming language code. For complete-p. 58] which is well-behaved only if there exists some final

ness, this appendix presents their weakest precondition s§alue’ that makes true. This is appropriate for our case

mantics. In particular, these definitions are sufficient to provestudy since we model executable programming |anguage con-
the correctness of the laws in Section 6.1. structs only, and avoid operators such as division that may be
A weakest preconditiorwp.S.R, is a predicate charac- yndefined for certain values of their operands. The second
terising those initial states from which stateméhis guar-  conjunct in the semantics says that such an assignment will
anteed to terminate in a state satisfying a given postconditiochieve postconditio®, reexpressed using variahlis final

predicatel? [10, p. 128]. The full stops denote left-associative yalyer’, provided thatR is established by any final valué
function application, so wg. R is equivalent tqwp(.S))(R) that satisfiey.

and wpsS is thus a higher-order function on predicates, called
apredicate transformer

Table 3 gives the weakest precondition semantics for our
modelling language primitives. Le® and R be predicates
on the program statej; be a program variablé’ be a type;
G be a predicate on the program state which may also refer
to v’; S be a statement in our modelling languagé;be a
statement-valued variable; arfti X') be a compound state-
ment that may containX’ where a statement is expected.

A Semantics of Modelling Language Primitives



