

This is the author version of an article published as:

Fidge, Colin J. (2006) Formal Change Impact Analyses for Emulated
Control Software . International Journal on Software Tools for
Technology Transfer 8(4-5):pp. 321-335.

Copyright 2006 Springer-Verlag

Accessed from http://eprints.qut.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10880259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Formal Change Impact Analyses for Emulated Control Software
C. J. Fidge

School of Information Technology and Electrical Engineering, The University of Queensland

Abstract. Processor emulators are a software tool for allow-
ing legacy computer programs to be executed on a modern
processor. In the past emulators have been used in trivial ap-
plications such as maintenance of video games. Now, how-
ever, processor emulation is being applied to safety-critical
control systems, including military avionics. These applica-
tions demand utmost guarantees of correctness, but no veri-
fication techniques exist for proving that an emulated system
preserves the original system’s functional and timing proper-
ties. Here we show how this can be done by combining con-
cepts previously used for reasoning about real-time program
compilation, coupled with an understanding of the new and
old software architectures. In particular, we show how both
the old and new systems can be given a common semantics,
thus allowing their behaviours to be compared directly.

Key words: Software maintenance – Program analysis

1 Introduction

Processor emulators are a valuable software tool for com-
puter system maintenance. They allow a machine-code pro-
gram written in an obsolete instruction set to be executed on
a modern processor. In effect, a processor emulator interprets
an old program on a new machine. To date, processor emula-
tion has enjoyed considerable success in trivial applications
such as maintenance of video games [18].

Now, however, the technology is being trialled for safety
and mission-critical applications such as military avion-
ics [9]. Whereas aircraft remain in service for decades, the
embedded microprocessors they contain have a lifecycle
measured in mere years. Processor obsolescence has thus be-
come a major technical [8] and economic [7] problem for

Correspondence to: Dr C. Fidge, ITEE, University of Queensland, Australia
4072. E-mail:cjf@itee.uq.edu.au . Fax: +61 7 3365 1533.

long-lived control systems. Maintaining computer processors
that are no longer mass produced is prohibitively expensive,
as is rewriting legacy software for a new machine, so proces-
sor emulation is seen as an attractive potential solution [9].

However, for processor emulation to be acceptable in
situations where human life and national security are at
stake, its use demands the strongest possible guarantees of
correctness. Avionics software development is governed by
internationally-recognised standards such as DO-178B [26],
which is itself supplemented by recommended processes for
avionics software maintenance [35,36]. These stress the im-
portance of performingchange impact analysesto assess the
potential effects of software upgrades on the functional and
timing characteristics of an existing control system.

Unfortunately, standards tend to lag behind technological
developments, and the avionics standards do not yet describe
processes for analysing emulated control software. There-
fore, this paper aims to show how real-time program proof
concepts [15,16,28], especially those previously intended for
reasoning about compiler correctness [19,25], can be used to
verify that an emulated Operational Flight Program provides
a behaviour ‘equivalent’ to that of the legacy code. This is
a challenging problem because processor emulation involves
execution of both legacy machine code and new high-level
language software patches, and because embedded control
software interacts directly with its hardware environment.

In previous work [13] we performed a partial-correctness
analysis, based on the software’s underlying weakest precon-
dition semantics. By contrast, this paper performs a much
clearer and simpler total-correctness proof at the program-
ming statement level, by modelling language primitives as
relational assignments.

2 Legacy Mission Computer System Software

As a running example, this section introduces a fragment of
a typical Operational Flight Program, as would be found in a

2 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

Serial
data bus

Radar
Altimeter
processor

Inertial
Navigation

System

Air Data
Computer

Radar
Warning
Receiver

Display
Processor

Radar
Signal

processor

Mission
Control

Computer

Stores
Management

System

Fig. 1.Typical military avionics control system architecture

¾ -

AA

¾ -

¢¢ ¢¢AA
frame 2frame 1

major cycle (100ms)

minor cycle (50ms)

Log idle idleCommRateCommRate

Fig. 2.Schedule for the example Operational Flight Program

military avionics system. Such programs are notoriously hard
to maintain because

– they are embedded within a larger system, and thus inter-
act directly with hardware devices,

– they must respond to multiple inputs and control multiple
outputs, so they require concurrency,

– they must react to external events in a timely manner, so
they are subject to rigid real-time constraints, and

– they have limited computing resources at their disposal,
so there is usually no clear separation between ‘system’
and ‘application’ code [21].

A typical avionicsMission Computer Systemconsists of
several Remote Terminals connected via a data bus, as shown
in Fig. 1 [22]. EachRemote Terminalis a processor board
dedicated to a particular aircraft function, and is normally
connected directly to one or more peripheral devices. For in-
stance, theRadar Altimeterprocessor samples altitude read-
ings from the corresponding sensor, whereas theDisplay Pro-
cessorsends information to cockpit instruments. TheMis-
sion Control Computermanages overall system functions and
controls bus access.

The Operational Flight Programexecuting on each Re-
mote Terminal will usually have a ‘cyclic executive’ archi-
tecture [3]. This consists of severaltasks, which perform
the necessary computations, and aMission Computer Exec-
utive, which controls allocation of computing resources to
tasks [11]. For instance, we assume here that there are three
tasks to be performed on the Radar Altimeter processor.

– Rate: Samples the current altitude and calculates the rate
of ascent

– Comm: Sends the current altitude and ascent rate to the
Display Processor

– Log: Writes altitude data to the flight recorder

The Mission Computer Executive is then responsible for
invoking these tasks in a timely manner. A typical ‘timer-
driven’ executive [17] consists of a loop which at each it-
eration:

1. waits for a periodic timer interrupt to occur;
2. increments aframecounter; and
3. invokes one or more tasks, depending on the frame num-

ber.

The frequency of timer interrupts therefore governs the rate at
which tasks can be performed. For the purposes of our exam-
ple we assume that timer interrupts occur with a frequency
of 20 hertz on the legacy Radar Altimeter processor, which
means that each frame has a duration of 50 milliseconds.

The choice of which tasks to invoke in a given frame
is made by following a predetermined taskschedule. Fig. 2
shows a possible schedule for the three tasks on the Radar Al-
timeter processor. The critical Rate and Comm tasks are exe-
cuted every 50 milliseconds, but the less important Log task
is executed only every 100 milliseconds. (Non-critical diag-
nostic tasks may occupy the idle time at the end of frames.)
At the end of each major cycle the pattern repeats indefinitely.

The tasks themselves typically read inputs, process data,
and send outputs. For instance, the legacy code for the Rate
task is shown in Fig. 3. For readability we use assembly no-
tation throughout this paper, although the legacy program is
likely to exist as undocumented machine code only. As an
illustrative assembly language we use a two-address instruc-

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 3

Label Op. Args. Comment

LOAD A, 600dir get previous altitude (1)
LOAD C, 1imm load constant 1 (2)

READALT OUT C, P start ADC conversion (3)
LOAD B, 3imm initialise busy-wait counter (4)

ADCDELAY SUB B, 1imm decrement busy-wait counter (5)
BRGT ADCDELAY iterate while counter exceeds zero (6)
IN B , Q read new altitude (in feet) from ADC (7)

SAVEALT STORE B, 600dir save new altitude (8)
SUB B, A compute change in altitude (in feet) (9)
MULT B, 20imm convert difference to feet per second (10)

SAVERATE STORE B, 601dir store calculated ascent rate (11)

Fig. 3.Legacy assembly code for the Rate task

tion set for a simple processor with eight general-purpose reg-
isters,A to H, and a comparison register which holds the re-
sults of explicitCMPRinstructions, or the difference between
the last register update and zero [14, Ch. 7]. Direct and imme-
diate addressing modes are indicated by subscripts. We also
assume the existence of a set of memory-mapped input/output
ports,P to W, to interface with hardware devices.

The Rate task begins by fetching the altitude saved during
its previous invocation from memory location600. Instruc-
tions 2 to 7 then read the altitude from the radar altimeter
through an Analog-to-Digital Converter. The task writes ‘1’
to the ADC’s control register, via output portP, to start the
conversion. It must then wait at least30 microseconds for
the conversion to be completed. Assuming an instruction ex-
ecution time of5 microseconds, the task does this by busy-
waiting at labelADCDELAY(consuming 7 instruction cycles,
including the initialLOAD). Instruction 7 then reads the new
altitude from the ADC’s data register, via input portQ, and
instruction 8 saves it for the next invocation.

Instructions 9 and 10 then use the previous and current al-
titude readings to calculate the ascent rate. The constant in the
MULTinstruction reflects the fact that the executive invokes
this task at a frequency of 20 hertz. Finally, instruction 11
saves the result in memory location601. (When invoked next,
the Comm and Log tasks can thus access the current altitude
and ascent rate from locations600 and601, respectively.)

3 Processor Emulation

After a Mission Computer System such as that described
above has been in service for several years it becomes in-
creasingly difficult and expensive to maintain [7]. There is
thus a strong incentive to replace obsolete processors in the
Remote Terminals with modern equivalents [8], but an old
Operational Flight Program will not execute on a new pro-
cessor with a different instruction set.

Processor emulation offers a potential solution by intro-
ducing an emulator program to interpret the legacy code on a

Old
processor

Old i/o
devices

Old
machine code

Fig. 4.Components of a legacy control system

New
processor

New i/o
devices

Real-Time
Operating System

Processor
emulator

Old
machine code

New sub-
routines

Fig. 5.Components of an emulated control system

new processor [9]. As shown in Fig. 4, a typical legacy con-
trol system consists of machine code executing directly on
the old processor and interacting directly with input/output
devices. Introducing a processor emulator changes the archi-
tecture as shown in Fig. 5. The old program is now inter-
preted by the processor emulation software, which itself runs
on a standard Real-Time Operating System (RTOS). Proces-
sor emulators are available as commercial, off-the-shelf prod-
ucts [23], for specific legacy instruction sets.

However, despite the desire to reuse the legacy code with-
out change, some adjustments are inevitable if an embedded
control program is to work correctly in a new hardware en-
vironment. To support this, emulators provide an Application
Programming Interface (API) which allows programmers to
associate software patches with particular instruction mem-
ory locations or input/output ports [34]. When the emulated

4 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

void ReadAlt() // patch linked to labelREADALT
{ int Altitude, Busy; (12)

WriteIOPort(T, 1); // start ADC conversion (13)
do { Busy = ReadIOPort(V); // wait while ADC busy (14)
} while Busy == 1; (15)

Altitude = ReadIOPort(U); // read ADC data (in metres) (16)
Altitude = Altitude * 3.28; // convert metres to feet (17)
WriteReg(B, Altitude); // put altitude (in feet) in registerB (18)
UpdateIC(SAVEALT); // bypass legacy ADC code (19)
return ; (20)

}

Fig. 6.New high-level language subroutine to read altimeter data

code reaches such a point, the emulator transfers control to
a corresponding subroutine written in the emulator’s native
high-level programming language. This subroutine may use
API operations provided by the emulation package to access
the new hardware architecture, or modify the legacy proces-
sor’s (emulated) state.

In our example, for instance, we will assume that the
outmoded altimeter and Analog-to-Digital Converter are re-
placed as part of the hardware upgrade. This invalidates in-
structions 3 to 7 in Fig. 3 because this code is specific to the
original altimeter and ADC. We assume instead that the new
ADC provides a ‘busy’ signal (with a known worst-case de-
lay), as a more robust alternative to busy-waiting [33], and
that the new altimeter is calibrated in metres, rather than feet.

To account for this change, the parameterless C++ sub-
routine in Fig. 6 uses emulator API operations to interface
with the new altimeter and ADC. It is called whenever the
emulated code reaches labelREADALT. Statement 13 starts
the data conversion by writing to the new ADC’s control reg-
ister at output portT. Statements 14 and 15 then wait while
the ADC’s busy signal at input portV equals1 [20, p. 400].
Statement 16 then reads the result from the ADC’s data regis-
ter via input portU. Since the new altitude is in metres, rather
than feet as expected by the legacy code, this value is con-
verted to the appropriate units by statement 17. Statement 18
puts the altitude in (emulated) registerB. Statement 19 then
updates the (emulated) processor’s instruction counter, so that
control will bypass the legacy instructions for accessing the
ADC, and will go to labelSAVEALT rather than back to
READALT, when the subroutine returns.

The need to introduce the software patch above was ob-
vious. More worrying are necessary changes that may be
overlooked when installing an emulator. For instance, as-
sume now that the new processor generates timer interrupts
at a frequency of 25 hertz, rather than the legacy processor’s
20 hertz. Because emulators can interpret instructions much
faster than they could be executed on the old processor [23],
the legacy program may still execute ‘correctly’ in this situa-
tion, in the sense that each task still completes all of its nec-
essary computations within each frame. Indeed, the emulated

system could be extensively tested without any problems be-
ing detected.

However, consider the purpose of instruction 10 in Fig. 3.
The legacy system’s programmer used constant ‘20’ in this
multiplication on the assumption that the Rate task is invoked
20 times per second—any change to this frequency also re-
quires the corresponding arithmetic to be changed. If this is
not done in the situation described above, the calculated as-
cent rate will be inaccurate by 25%. Thus legacy code which
is time-sensitive, but not recognised as such, presents a sig-
nificant danger. (To avoid this risk some emulation packages
provide a ‘speed matching’ option [23], even though its use
wastes available processor time.)

In this case a solution is to add another patch, associated
with label SAVERATE, as shown in Fig. 7. (New subrou-
tines are executedbefore the instruction at the correspond-
ing label [34], so the patch is called between instructions 10
and 11.) The new code simply increases the calculated ascent
rate by 25% to correct the distortion caused by the changed
frequency.

With the addition of these subroutines the upgraded Mis-
sion Computer System’s programmer aims to achieve a be-
haviour equivalent to that of the original Rate task. The
challenge now is to convincingly verify that no unintended
changes in behaviour have been introduced and that all nec-
essary software patches have been made.

4 Approach to Verifying Emulated Control Software

Our overall goal, therefore, is to formally prove that the em-
ulated legacy code provides the ‘same’ functional and timing
behaviour as it did when executed on the original processor.
However, we already know that this willnot be the case. The
emulator will interpret instructions faster than the original
processor [23], and the emulated program contains software
patches to accommodate hardware changes. Thus the ‘equiv-
alence’ to be proven is an approximate one that must accept
harmless differences.

(Ideally, it should be possible to show that both the legacy
and emulated systems satisfy the original system’s require-

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 5

void SaveRate() // patch linked to labelSAVERATE
{ int AscentRate; (21)

ReadReg(B, AscentRate); // get skewed ascent rate (22)
AscentRate = AscentRate * 1.25; // compensate for higher frame rate (23)
WriteReg(B, AscentRate); // put corrected ascent rate (24)
return ; (25)

}

Fig. 7.New high-level language subroutine to correct saved ascent rate

ments specification. However, adequate requirements docu-
mentation is unlikely to exist for a legacy control system, es-
pecially if its behaviour was calibrated experimentally, or if
it was modified substantially during its operational lifetime.)

Furthermore, fully verifying the equivalence of the two
systems is impossible with contemporary proof technology.
Fig. 5 shows that the new system interposes both a propri-
etary processor emulator and a commercial Real-Time Oper-
ating System between the legacy code and the new processor.
Verifying the correctness of these large-scale software com-
ponents is well beyond the capabilities of current formalisms.
As a compromise, we thereforeassumethat the manufacturer
of the emulation package can provide evidence that the emu-
lator has passed the original test suite for the legacy proces-
sor’s instruction set, as is usually required in safety-critical
applications [23]. We alsoassumethat the underlying RTOS
is one intended for safety-critical applications and that its
manufacturer can thus provide evidence that its development
met relevant standards [4]. Although neither of these assump-
tions mean that the software has been formally verified cor-
rect, they give us sufficient confidence in the integrity of these
system components that we need not attempt to verify them
ourselves, and can instead concentrate on comparing the two
versions of the Operational Flight Program.

(Interestingly, we may also usually assume that the legacy
software has a ‘clean’ in-service history—any serious prob-
lems with it will already have been detected and eliminated
during its operational lifetime—so we do not need to reason
about the legacy code’s ‘correctness,’ merely our ability to
emulate its behaviour.)

Therefore, assuming that the emulator interprets legacy
instructions correctly, our specific goal is to prove an (ap-
proximate) equivalence between the legacy assembly code
(Fig. 3), and the legacy code augmented with hardware-
specific patches. Even this presents a challenge because the
emulated program interleaves legacy assembly-level instruc-
tions and high-level language statements, as shown in Fig. 8.
The closest analogy to this situation occurs in formalisms
for modelling program compilation [27,32] or decompila-
tion [6], where relationships between high and assembly-
level programs are proven. Our model below therefore adapts
various ideas from these formalisms, especially those used
for reasoning about compilation of real-time programs [19,
25] since we need the ability to analyse time-sensitive code.

LOAD A, 600dir ;
LOAD C, 1imm ;
call ;
{ int Altitude, Busy;

... (see Fig. 6)
return ;

} ;
STORE B, 600dir ;
SUB B, A ;
MULT B, 20imm ;
call ;
{ int AscentRate;

... (see Fig. 7)
return ;

} ;
STORE B, 601dir

Fig. 8.Behaviour of the emulated Rate task

5 Modelling Legacy and Emulated code

To prove any relationship between two programs we must
first give them a common semantic basis. This section intro-
duces a set of primitives for modelling program fragments,
and uses them to give a semantics to the legacy instructions
and emulator operations in our case study.

5.1 Modelling Language Primitives

The basic modelling language contains the following well-
known primitives [10,1]. (Formally, they can all be given a
weakest-precondition semantics as described in Appendix A,
but it is not necessary to understand this underlying semantics
for the proof below.)

– An assumption, [P], states that propertyP is expected to
hold at this point in the program [1, p. 189]. LetP be
a predicate on the state variables currently in scope. Intu-
itively, an assumption is used to document conditions that
are expected to have been established by the program’s
environment [1, p. 5].

6 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

– An assertion, {P}, similarly states that predicateP is ex-
pected to hold at the point where it appears [1, p. 189]. In
this case however, the condition is one which the program
itself is obliged to make true [1, p. 4].

– A relational assignment, [v := v′ | G], models assignment
of a valuev′, defined by predicateG, to variablev [2,
§4.7]. PredicateG may refer to state variables and the
primed value ‘v′’ which denotes variablev’s value when
the assignment terminates.

– Sequential composition, ‘S1 ;S2’, of two statements mod-
els execution of statementS1 followed by execution of
statementS2 in the usual way [10, p. 137].

– A local variable declaration, ‘var v : T •S’, adds a fresh
variable named ‘v’ of type T to statementS’s state space
[1, p. 227].

– A (demonic)nondeterministic choice, ‘S1 u S2’ denotes
an arbitrary choice between statementsS1 and S2 [1,
p. 189].

– A recursive statement, ‘rec X • S(X)’, denotes state-
ment S(X) with a copy of itself substituted whenever
program-valued variableX is encountered [1, Ch. 20].
HereS(X) is a compound statement in which ‘X ’ may
appear where a statement is normally expected. (For-
mally, the recursive statement denotes the least fixed point
in the weakest-precondition ordering of programs.)

Each of these primitives serves a distinct purpose. Assertions
and assumptions provide ways of interrogating the state vari-
ables. Assignments allow the state to be updated. Sequential
composition allows statements to be constructed from sub-
statements. Variable declarations allow the state space to be
extended. Choice coupled with recursion allows modelling of
iteration [1, p. 15].

In particular, the relational assignment supports espe-
cially concise models of program fragments. We allow it to
be generalised to multiple simultaneous assignments, e.g.,
[v, w := v′, w′ | G], in the usual way [1, p. 156]. As a short-
hand we also allow the predicate part to be omitted when it is
trivial. Let E be an expression on (unprimed) state variables
which is type-compatible with variablev.

[v := E] def= [v := v′ | v′ = E]

We also allow both of these representations to be freely mixed
in multiple assignments.

5.2 Legacy Instruction Semantics

Using this modelling language, Table 1 defines the meaning
of assembly instructions as executed on the legacy processor.
This is done by describing the effect of each instruction on
the legacy processor’s state, which consists here of general-
purpose registers, the special comparison register, and data
memory. As in previous real-time formalisms [15,16], we
also explicitly model the current time by a special variable,τ .

In Table 1 letS be a basic block of instructions in our
assembly language that does not contain branch instructions
or labels that are the targets of branch instructions;r be a

Table 1.Semantics of legacy assembly code instructions

Instruction or
basic blockS

Equivalent modelling language
statement

LOADr, zimm [r, c, τ := z, z, τ + 5µs]
LOADr, adir [r, c, τ := m(a),m(a), τ + 10µs]
STOREr, adir [m, τ := m⊕ {a 7→ r}, τ + 10µs]
SUBr1, r2 [r1, c, τ := r1 − r2, r1 − r2, τ + 5µs]
SUBr, zimm [r, c, τ := r − z, r − z, τ + 5µs]
MULTr, zimm [r, c, τ := r ∗ z, r ∗ z, τ + 10µs]

‘S1

S2’
S1 ; S2

‘` S
BRGT̀ ’

rec X • (S ; [τ := τ + 5µs] ;
(([c > 0] ; X) u [c 6 0]))

OUTr, P [Pv, Pt, τ := r, Pt′, τ + 5µs |
τ < Pt′ 6 τ ′]

IN r, Q {Pv = 1 ∧ τ − Pt > 30µs} ;
[r, c, τ := Y, Y, τ + 5µs]

register;` be a label;z be an integer (representable on the
legacy processor);c be the comparison register;m be the data
memory array;a be a data memory address;Y be a device-
dependent external input value; andτ be the current time.

The first group in Table 1 defines the effect of simple in-
structions, each of which can be modelled as a multiple as-
signment. For instance, the ‘LOAD’ instruction with an imme-
diate operandz changes three variables,r, c andτ . It sets both
registersr andc equal to integerz, and adds5 microseconds
to current timeτ , to account for the instruction’s execution
time. The other instructions follow similarly. Instructions that
access memory or perform complex arithmetic are assumed
to take10 microseconds. Data memorym is represented as a
function from addresses to values. In the ‘STORE’ definition,
functional overridingm⊕ {a 7→ r} denotes functionm with
domain elementa mapped to valuer [31, p. 128].

The next two groups in Table 1 define the behaviour of
two commonly-occurring patterns of instructions. The first
simply reminds us that vertically displayed blocks of assem-
bly instructions are interpreted as being sequentially com-
posed (provided that the sequence does not contain branches,
or labels that are the targets of branches). By giving a mean-
ing to particular control-flow patterns in this way, we avoid
the need to explicitly model the legacy processor’s instruc-
tion counter [12].

The next pattern consists of a basic blockS, labelled bỳ ,
which is followed by a conditional branch ‘BRGT’ to `. In ef-
fect, this is a loop which performs one or more instances of
block S, terminating when the comparison registerc is not
positive. Modelling such patterns as a unit avoids the chal-
lenging problem of defining a separate semantics for branch
instructions. (In the past this has been done by introducing
an explicit interpreter of instruction sequences [27,25], or by
addinggoto statements to the modelling language [32,5].)

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 7

The semantics on the right uses the recursion primitive to
model iteration. Basic blockS is followed by an assignment
that adds5 microseconds to the current time, to model the
overhead of performing the ‘BRGT’ instruction at the end of
each iteration. This is followed by a choice between two state-
ments containing complementary assumptions (which makes
the choice deterministic). If comparison registerc is posi-
tive the left-hand alternative is followed, and the whole ‘rec’
statement recurs. Ifc is not positive then the recursive state-
ment terminates. Similar definitions can be given for other
branching or iterative patterns of instructions [12].

The final group in Table 1 defines the meaning of in-
put/output instructions for two specific memory-mapped i/o
ports. Since the properties of external devices are essential
for reasoning about the behaviour of an embedded program,
we model important device characteristics in the semantics of
the instructions that access the devices. Inspired by the Tem-
poral Agent Model [28], each output portX is modelled by
two variables,Xv, which denotes the value currently stored in
the port’s location, andXt, which is a timestamp holding the
time at which this value last changed. The latter variable is an
auxiliary one—it cannot be accessed by the executable code,
but is used to reason about time-sensitive behaviours.

Thus, instruction ‘OUTr, P’ in Table 1 writes the value
in registerr to the ADC’s control register, and takes5 mi-
croseconds to do so. TimestampPt tells us that the register
will be updated after the instruction’s starting timeτ , but no
later than its finishing timeτ ′ (i.e.,τ + 5µs), although we do
not know here exactly when in this interval the update will
be completed. This shows how relational assignments can be
used to model nondeterministic behaviour.

Finally, the ‘IN r, Q’ instruction reads from the ADC’s
data register and is modelled by two primitives. The initial
assertion accounts for the time required for the ADC to per-
form the conversion. It obliges the programmer to ensure that
value ‘1’ was written to control registerP at least30 mi-
croseconds ago. If so, the following assignment sets regis-
ter r (andc) equal to some valueY produced by the external
environment. In our case study this value represents an alti-
tude reading produced by the legacy system’s radar altimeter.
Since external inputs are beyond the control of the Opera-
tional Flight Program, we cannot predict what values they
denote and must model them symbolically.

5.3 Emulated Statement Semantics

To define the meaning of emulated code we need to define
a semantics for all the operations performed by the proces-
sor emulator, including emulated legacy instructions, Appli-
cation Programming Interface subroutines, and actions of the
emulator itself. Since the emulator maintains its own repre-
sentation of the legacy processor’s state, these operations can
be defined with respect to this state, together with locally-
scoped high-level language variables.

We have assumed that the emulator interprets instruc-
tions correctly, so emulated instructions will have the same
functional behaviour as they did on the original processor.

Table 2.Semantics of emulator operations and statements

Operation or
statementS

Equivalent modelling language
statement

v = E [v, τ := E, τ + DEµs]
{ int v; S; } var v : Z • ([τ := τ + DZµs] ; S ;

[τ := τ + DZµs])

S1; S2 S1 ; S2

do { S } while B rec X • (S ; [τ := τ + DBµs] ;
(([B] ; X) u [¬B]))

call [τ := τ + 4µs]
return [τ := τ + 4µs]

ReadReg(r, v) [v, τ := r, τ + 1µs]
WriteReg(r, v) [r, c, τ := v, v, τ + 1µs]
UpdateIC(̀) [τ := τ + 1µs]

WriteIOPort(T, z) [Tv, Tt, τ := z, Tt′, τ + 2µs |
τ < Tt′ 6 τ ′]

v = ReadIOPort(V) {Tv = 1} ;
[v, τ := v′, τ + 2µs |
((τ − Tt < 10µs) ⇒ v′ = 1) ∧
((τ − Tt > 10µs) ⇒ v′ = 0)]

v = ReadIOPort(U) {Tv = 1 ∧ τ − Tt > 10µs} ;
[v, τ := Z, τ + 2µs]

The only difference is that emulated instructions will execute
faster [23]. Thus the emulated semantics for simple assem-
bly instructions is the same as that shown in the first group in
Table 1, except that we assume all5 microsecond execution
times are replaced by2 microseconds, and all10 microsecond
execution times are replaced by4 microseconds.

The semantics for other emulator operations is shown in
Table 2. LetS be a (compound) statement in the emulator’s
API language (C++ here);v be a high-level language vari-
able; ` be an assembly language label;r be a legacy pro-
cessor register;z be an integer;E be a high-level language
expression;B be a boolean-valued expression;DF be a non-
negative duration in microseconds whose magnitude depends
on language constructF ’s structure;Z be a device-dependent
external input value; andτ be the current time.

The first group in Table 2 consists of C++ statements for
assignment, declaring an integer, sequential composition and
do-while iteration, as used in API subroutines. Their seman-
tics follows that of other real-time formalisms [15]. The as-
signment statement’s execution time is represented symbol-
ically by a durationDE whose value depends on the struc-
ture of expressionE. Ways of predicting execution times
for high-level language statements and expressions, based on
their syntactic structure, have been well explored in the real-
time literature [30]. (However, this approach produces dif-
ferent results depending on which compiler code generation
strategies and optimisations are anticipated. Therefore, such
an analysis may produce a range of possible durations for

8 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

DE , from the best to the worst-case execution time. In this
situation the equivalence proof below should be checked for
each such value.)

Similarly in the do-while semantics, durationDB de-
notes the time required to evaluate expressionB and branch
accordingly. Otherwise the definition is similar to that for the
BRGTloop in Table 1.

The high-level language variable block includes a timing
overhead before and after the enclosed statement to respec-
tively allocate and deallocate space for the newly-declared
variable. In Table 2 letZ denote the integer type, andDZ be
the time required to (de)allocate stack space for a variable of
this type.

The ‘call’ and ‘return ’ operations in Table 2 represent the
actions taken by the emulator to respectively transfer control
to and from a parameterless Application Programming Inter-
face subroutine. These operations do not change the emulated
legacy processor’s state, so their only impact on our model is
the4 microsecond delay they introduce.

The third group in Table 2 includes operations provided
by the emulator’s Application Programming Interface for
modifying the (emulated) legacy processor’s state. The first
two allow the value of a high-level language variablev to
be read from and written to a legacy processor registerr, re-
spectively. The ‘UpdateIC’ operation updates the (emulated)
instruction counter. However, since we have avoided mod-
elling the legacy instruction counter explicitly [12], the only
effect of the operation here is a1 microsecond delay.

The final group of emulator operations in Table 2 are spe-
cific to the new Analog-to-Digital Converter. The first writes
an integer to the ADC’s control register at output portT. The
operation as modelled simply stores the value, and takes2 mi-
croseconds to do so. In reality, however, this operation also
affects the hardware device itself, causing it to perform an
action whose outcome is observable later. In our model, the
effects of this action are described in the next two operations
in the table, which read from the device.

The first reads the ADC’s busy signal, from input portV.
The initial assertion obliges us to ensure that the control reg-
ister at portT has previously been assigned value ‘1’. If so,
then the statement’s outcome depends on how much time has
elapsed since portT was updated. Within10 microseconds
of this time the busy signal reads ‘1’. After this time it re-
turns ‘0’, indicating that it is now safe to read from the data
register. The second operation reads from the ADC’s data reg-
ister at input portU. The assertion says that we are obliged to
ensure that at least10 microseconds have elapsed since ‘1’
was written to the control register at portT. If so, the oper-
ation reads an application-specific external input valueZ. In
our case studyZ denotes an altitude produced by the new
radar altimeter.

6 Equivalence of the Legacy and Emulated Tasks

Having given a meaning to basic legacy instructions and em-
ulator operations above, we now want to apply these seman-

tics to characterise the behaviour of the whole legacy and
emulated tasks. This section presents a number of algebraic
laws for calculating the semantics of program fragments, uses
them to determine the semantics of the two tasks, and then
compares the results.

6.1 Reasoning Laws

The semantics above makes extensive use of (multi-
ple, demonically-nondeterministic) relational assignments to
model atomic actions. In our example programs these actions
are composed sequentially, or in loops and declarative blocks.
Therefore, to calculate the semantics of the tasks, we need
laws for combining relational assignments via these construc-
tors.

The following laws are the main ones used in the proof
below. They are based on well-known principles from the
‘program refinement’ literature [29,24] but we have reex-
pressed them in relational assignment [2] form. (They can
all be proven using the semantics in Appendix A.) For clarity
they are shown for single-variable assignments only, but the
principles extend readily to multiple assignments.

The first law states that an assumption before a relational
assignment can be absorbed into the assignment. HereP is a
predicate on the state space andG is a predicate on the state
space that can additionally refer to final valuev′.

Law 1 (Preceding assumption)

[P] ; [v := v′ | G] = [v := v′ | P ∧G]

In a complementary situation, an assertion following an
assignment can be eliminated if we are certain that the as-
signment will establish the assertion [24, p. 66]. LetP [t/v]
be predicateP with all free occurrences of variablev replaced
by termt [24, §A.2.1].

Law 2 (Succeeding assertion)

[v := v′ | G ∧ P [v′/v]] ; {P}
= [v := v′ | G ∧ P [v′/v]]

The next two laws show how consecutive assignments can
be merged. The first applies to two assignments to the same
variable. LetG andH be predicates on the state space which
may refer to final valuev′. Let ‘∀v • P ’ and ‘∃v • P ’ de-
note universal and existential quantification of variablev over
predicateP , respectively.

Law 3 (Assignments to same variable)

[v := v′ | G] ; [v := v′ | H]
= [v := v′ | (∀v′′ •G[v′′/v′] ⇒ (∃v′ •H[v′′/v])) ∧

(∃v′′ •G[v′′/v′] ∧H[v′′/v])]

On the right-hand sidev′′ represents an intermediate value of
variablev, between the two assignments on the left. (Vari-
ablesv andv′ on the right denotev’s value before and after
the whole assignment in the usual way). There are two con-
juncts in the right-hand statement’s predicate part [29]. The

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 9

first ensures that given any value ofv produced by the first
statement on the left-hand side that the second statement on
the left can perform a computation. Otherwise, the first state-
ment on the left could leavev in a state from which the sec-
ond statement could never succeed. (Although intimidating,
this condition is satisfied trivially throughout the proof below
because none of our atomic statements has significant pre-
conditions for successful execution.) The second conjunct de-
fines the behaviour of the assignment on the right-hand side
to be the combined behaviour of the two assignments on the
left, with predicateG’s final value for variablev unified with
H ’s initial value forv.

In the case of consecutive assignments to distinct vari-
ablesv andw the law is essentially the same. HereH is a
predicate on the state space in which variablesw, w′ andv′

may appear free, butnot v. This is because, on the left-hand
side, the original value ofv before the first assignment is
not accessible by the second assignment. The ‘v′’ in H thus
refers to variablev’s value between the two assignments on
the left, which is also its final value in the combined assign-
ment on the right. (On the left-hand sideH[v/v′] is thus a
predicate in which only variablew may appear in primed
form, as usual.)

Law 4 (Assignments to different variables)

[v := v′ | G] ; [w := w′ | H[v/v′]]
= [v, w := v′, w′ | (∀v′ •G ⇒ (∃w′ •H)) ∧G ∧H]

Since our definition of iteration makes use of a nondeter-
ministic choice operator, it is also convenient to have a law
that shows how choices between relational assignments can
be combined [29]. LetG andH be predicates on the state
space in whichv′ may appear free.

Law 5 (Choice between assignments to same variable)

[v := v′ | G] u [v := v′ | H]
= [v := v′ | (∃v′ •G) ∧ (∃v′ •H) ∧ (G ∨H)]

The first two conjuncts in the predicate on the right-hand side
ensure that both alternatives lead to executable computations.
The final conjunct simply defines the effect of the combined
statement to be that of either alternative [29].

Finally, the following law shows how an initialised vari-
able block can be introduced. Its proviso avoids name clashes
with existing variables. LetE be an expression of typeT .

Law 6 (Introduce fresh variable)

[v := v′ | G]
= ‘providedw does not appear free inG’

var w : T • ([w := E] ; [v := v′ | G])

On the right the second assignment makes no use of vari-
ablew, but Law 4 above can then be applied to merge the
two assignments inside the ‘var’ declaration, and thus allow
variablev’s final value to be defined in terms ofw.

6.2 Semantics of the Legacy Task

We now want to calculate the meaning of the legacy code
fragment in Fig. 3 using the semantics in Section 5.2 and the
laws in Section 6.1. Firstly, however, we must decide how to
model external inputs, i.e., value ‘Y ’ in Table 1. Since these
values are sampled from the external environment, the Rate
task makes no particular assumptions about them. Therefore,
we merely denote the altitude sampled by theith invocation
of the legacy Rate task by symbolic constantAi.

Also, we must consider the state in which the code frag-
ment of interest begins. Again, this is application-specific.
The Rate task’s only assumption about the initial system state
is that the altitude sampled during its previous invocation
must be available in memory location600. (A dummy value
is assumed to have been stored in this location before the Rate
task’s first invocation by the Operational Flight Program’s
initialisation code [13].) Therefore, we introduce an assump-
tion to document this requirement of the task’s environment.

[m(600) = Ai−1] (26)

For convenience, we also introduce an assumption that the
starting timeτ of the legacy (and emulated) task is zero.

[τ = 0] (27)

This assumption is not essential, but it simplifies the arith-
metic during the calculations below.

Thus, the legacy code fragment of interest consists of the
sequence of instructions in Fig. 3 preceded by the two as-
sumptions above. Our goal is to use the semantics in Table 1
and the laws in Section 6.1 to calculate the semantics of the
whole task. We begin by combining the assumptions above
with the semantics of the initialLOADinstruction.

(assumption 26); (assumption 27); (instruction 1)

= ‘by Table 1 and Law 1 (twice)’

[A, c, τ := m(600),m(600), τ + 10µs |
m(600) = Ai−1 ∧ τ = 0]

= [A, c, τ := Ai−1, Ai−1, 10µs |
m(600) = Ai−1 ∧ τ = 0]

= ‘by Law 1’

[m(600) = Ai−1 ∧ τ = 0] ;

[A, c, τ := Ai−1, Ai−1, 10µs] (28)

In the final step we separated the assumptions again because
they are not needed any further below.

This result can then be combined with the next three
instructions straightforwardly. The secondLOADinstruction
simply updates registerC.

(statement 28); (instruction 2)

= ‘by Table 1 and Laws 3 and 4’

[A, C, c, τ := Ai−1, 1, 1, 15µs] (29)

10 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

TheOUTinstruction at labelREADALTwrites to portP and
in doing so introduces a nondeterministically-defined time-
stamp.

(statement 29); (instruction 3)

= ‘by Table 1 and Laws 3 and 4’

[A, C, Pv, Pt, c, τ := Ai−1, 1, 1, Pt′, 1, 20µs |
15µs < Pt′ 6 20µs]

(30)

The nextLOADinstruction then puts a constant in registerB.

(statement 30); (instruction 4)

= ‘by Table 1 and Laws 3 and 4’

[A, B, C, Pv, Pt, c, τ := Ai−1, 3, 1, 1, Pt′, 3, 25µs |
15µs < Pt′ 6 20µs]

(31)

At this point we encounter the busy-wait loop at label
ADCDELAY. With respect to the semantics in Table 1, we
first combine theSUB instruction in the loop body with the
delay introduced by theBRGTinstruction, to determine the
semantics of a single iteration.

(instruction 5); [τ := τ + 5µs]
= ‘by Table 1 and Law 3’

[B, c, τ := B− 1, B− 1, τ + 10µs] (32)

From Table 1 we therefore have the following semantics for
the two instructions at labelADCDELAY.

rec X • ((statement 32); (([c > 0] ; X) u [c 6 0]))

The semantics of this whole construct is a statementX which
makes the statement inside the ‘rec’ construct equalX. Based
on our understanding of the code’s behaviour, we propose the
following statement for this purpose.

[B, c, τ := min(B− 1, 0),min(B− 1, 0),
τ + max(1, B) ∗ 10µs]

(33)

To understand this, consider that there are two possible be-
haviours for each iteration of the loop at labelADCDELAY.
In the case where the loop condition is already satisfied we
decrement registerB, taking10 microseconds to do so, and
then exit. This is defined by the first argument in the ‘min’
and ‘max’ operators above. In the second, recursive case, we
still do the same decrement, but then loop back to repeat the
process. This will ultimately result in registerB being decre-
mented until it reaches zero, and will takeB 10-microsecond
iterations to do so. This is defined by the second argument in
the ‘min’ and ‘max’ operators above.

We can confirm that this statement is a suitable fixed point
of the recursive construct as follows.

(statement 32);
(([c > 0] ; (statement 33)) u [c 6 0])

= ‘by Laws 1 and 5’

[B, c, τ := B− 1, B− 1, τ + 10µs] ;
[B, c, τ := B′, c′, τ ′ |
(c > 0 ∧ B′ = min(B− 1, 0) ∧
c′ = B′ ∧ τ ′ = τ + max(1, B) ∗ 10µs) ∨

(c 6 0 ∧ B′ = B∧ c′ = c ∧ τ ′ = τ)]

= ‘by Law 3’

(statement 33)

(Indeed, it is the only fixed point because the loop in question
is deterministic and terminates from any given starting state.)
When applying Law 5 above we treated assumption[c 6 0]
as a vacuous assignment[B, c, τ := B, c, τ | c 6 0].

This semantics for the loop can then be combined with
that of the preceding instructions.

(statement 31); (statement 33)

= ‘by Law 3’

[A, B, C, Pv, Pt, c, τ := Ai−1, 0, 1, 1, Pt′, 0, 55µs |
15µs < Pt′ 6 20µs]

(34)

In particular, statement 31’s assignment of3 to registerB is
used in the above step to simplify themin andmax expres-
sions in statement 33. In effect, it tells us that the loop body
is executed exactly 3 times.

Instruction 7 then reads a value from input portQ. Recall
from Table 1 that its semantics represents this symbolically
as ‘Y ’. Here we instantiate this with ‘Ai’, to denote the al-
titude sampled in the Rate task’sith invocation. TheIN in-
struction’s semantics also has a preceding assertion. This is
eliminated in the first step below since the preceding state-
ment guarantees that the requirement is satisfied.

(statement 34); (instruction 7)

= ‘by Table 1 and Law 2’

(statement 34);
[B, c, τ := Ai, Ai, τ + 5µs]

= ‘by Law 3’

[A, B, C, Pv, Pt, c, τ :=
Ai−1, Ai, 1, 1, Pt′, Ai, 60µs |
15µs < Pt′ 6 20µs]

(35)

Although the remaining four instructions complicate the
expressions, they are all straightforward state updates. The
STOREinstruction at labelSAVEALTupdates the memory
arraym.

(statement 35); (instruction 8)

= ‘by Table 1 and Laws 3 and 4’

[A, B, C, Pv, Pt,m, c, τ :=
Ai−1, Ai, 1, 1, Pt′, m⊕ {600 7→ Ai}, Ai, 70µs |
15µs < Pt′ 6 20µs]

(36)

The next two instructions perform arithmetic on registerB.

(statement 36); (instruction 9); (instruction 10)

= ‘by Table 1 and Laws 3 and 4’

[A, B, C, Pv, Pt,m, c, τ :=
Ai−1, (Ai −Ai−1) ∗ 20, 1, 1, Pt′,
m⊕ {600 7→ Ai}, (Ai −Ai−1) ∗ 20, 85µs |
15µs < Pt′ 6 20µs]

(37)

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 11

Finally, the last instruction makes a further update to data
memory.

(statement 37); (instruction 11)

= ‘by Table 1 and Law 3’

[A, B, C, Pv, Pt,m, c, τ :=
Ai−1, (Ai −Ai−1) ∗ 20, 1, 1, Pt′,
m⊕ {600 7→ Ai, 601 7→ (Ai −Ai−1) ∗ 20},
(Ai −Ai−1) ∗ 20, 95µs |
15µs < Pt′ 6 20µs]

(38)

Statement 38 thus defines the semantics of the legacy
code in Fig. 3. In particular, it tells us that the Rate task stores
sampled altitudeAi in memory location600, and the calcu-
lated rate of ascent in location601. This rate is the difference
between the currentAi and previousAi−1 altitudes multi-
plied by 20. Finally, the legacy task’s end-to-end execution
time is95 microseconds.

6.3 Semantics of the Emulated Task

In the emulated system, the Rate task consists of a sequence
of (interpreted) legacy instructions, emulator actions, and
API subroutines, as shown in Fig. 8. Having defined the se-
mantics of all of these operations above, we can determine
the semantics of the emulated Rate task in much the same
way as we did for the legacy task in Section 6.2.

Again, we model the external input valueZ in Table 2
symbolically. Let the altitude sampled in theith invocation of
the ‘emulated’ task be represented by symbolic constantAi.
(This value does not necessarily bear any relation to con-
stantAi in Section 6.2.) As we will see, the emulated system
multiplies altitude samples by3.28, to convert them from me-
tres to feet, so the emulated task’s assumption about the value
stored in memory location600 by its previous invocation is
as follows.

[m(600) = Ai−1 ∗ 3.28] (39)

Our goal is thus to calculate the semantics of the sequence
of ‘mixed language’ operations in Fig. 8. We begin by com-
bining the semantics of the first two assembly instructions
with that of our overall assumptions. Keep in mind through-
out this section that we assume ‘emulated’ instructions are in-
terpreted faster than instructions executed on the legacy pro-
cessor, and that all5-microsecond execution times in Table 1
are thus replaced by2 microseconds and all10-microsecond
execution times are replaced by4 microseconds.

(assumption 39); (assumption 27);
(emulated instruction 1); (emulated instruction 2)

= ‘by Table 1 and Law 1’

[m(600) = Ai−1 ∗ 3.28 ∧ τ = 0] ;

[A, C, c, τ := Ai−1 ∗ 3.28, 1, 1, 6µs] (40)

We then encounter a call to the subroutine in Fig. 6, which
contains a loop, nested within a local variable block. To cal-
culate the semantics of the whole subroutine we begin at the

most deeply nested construct and work outwards. We there-
fore begin with the loop body and determine the semantics
of a single occurrence of i/o statement 14 followed by the
overhead of evaluating the loop condition and branching. We
assume that it takes the emulator2 microseconds to evalu-
ate expression ‘Busy == 1’ and branch accordingly. As men-
tioned above, this duration could be established through static
analysis techniques [30].

(statement 14); [τ := τ + 2µs]
= ‘by Table 2 and Law 3’

({Tv = 1} ;
[Busy, τ := Busy′, τ + 4µs |
((τ ′ − Tt < 14µs) ⇒ Busy′ = 1) ∧
((τ ′ − Tt > 14µs) ⇒ Busy′ = 0)])

(41)

The ‘ReadIOPort(V)’ operation has a preceding assertion
which we must retain until it can proven to hold. For clar-
ity below we have also reexpressed the predicate in terms of
the finishing timeτ ′, rather than the starting timeτ .

From the definition ofdo-while loops in Table 2 we there-
fore have the following semantics for iterative statement 15.
(We use mathematical, rather than C++, notation for expres-
sions in the semantics.)

rec X • ((statement 41);
(([Busy= 1] ; X) u [Busy 6= 1]))

In this case we propose the following statement for the loop’s
fixed point. LetN1 denote the positive natural numbers (ex-
cluding zero).

({Tv = 1} ;
[Busy, τ := 0, min{u | u− Tt > 14µs∧

(∃n : N1 • u = τ + n ∗ 4µs)}])

(42)

The whole loop retains the preceding assertion stating that
control registerT has previously been assigned value1. The
loop finishes only when variable ‘Busy’ equals zero. The
timeτ is increased by4-microsecond increments (i.e., the ex-
ecution time of the loop body, statement 41) until it exceeds
timestampTt by 14 microseconds (rather than10 microsec-
onds because the4-microsecond loop body will be executed
even if the loop is reached after the end of the ADC’s10-
microsecond busy interval).

We can confirm that this statement is indeed a suitable
fixed point of the recursive construct above as follows.

(statement 41);
(([Busy= 1] ; (statement 42)) u [Busy 6= 1])

= ‘by removing the redundant assertion and Law 1’

(statement 41);
([Busy, τ := 0, min{u | · · ·} | Busy= 1] u
[Busy 6= 1])

= ‘by Law 5’

(statement 41);
[Busy, τ := Busy′, τ ′ |
(Busy= 1 ∧ Busy′ = 0 ∧ τ ′ = min{u | · · ·}) ∨
(Busy 6= 1 ∧ Busy′ = Busy∧ τ ′ = τ)]

12 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

= ‘by Law 3’

(statement 42)

In the first step we eliminated assertion{Tv = 1} from state-
ment 42 because this assertion already appears in state-
ment 41 and none of the intervening statements updatesTv.
(Although we have not presented a law for handling this spe-
cific situation, it is an application of the principles of propaga-
tion of assertions through compound statements [1,§28.3].)
In the second step we treated assumption[Busy 6= 1] as a
vacuous assignment.

The loop semantics can then be combined with that of the
first statement in the subroutine which writes to the ADC’s
control register at portT. In particular, this knowledge allows
us to elimate the assertion concerningTv and to determine
the number of iterations.

(statement 13); (statement 42)

= ‘by Table 2 and Law 2’

[Tv, Tt, τ := 1, Tt′, τ + 2µs | τ < Tt′ 6 τ ′] ;
[Busy, τ := 0,min{u | u− Tt > 14µs∧

(∃n : N1 • u = τ + n ∗ 4µs)}]
= ‘by Laws 3 and 4’

[Busy, Tv, Tt, τ := 0, 1, Tt′, τ ′ |
τ < Tt′ 6 τ + 2µs∧
τ ′ = min{u | u− Tt > 14µs∧

(∃n : N1 • u = τ + 2µs+ n ∗ 4µs)}]
= [Busy, Tv, Tt, τ := 0, 1, Tt′, τ + 18µs |

τ < Tt′ 6 τ + 2µs]
(43)

The final step recognises that the only possible value for the
number of timesn that the loop body is performed is 4. Thus
we have determined the number of iterations from the dura-
tion of the loop body and the ADC’s busy signal.

This result can be combined with the next statement in the
subroutine. Statement 16 reads from the ADC’s data portU.
In this case we assume the application-specific input valueZ
in Table 2 denotes the altitude sampled from the new radar al-
timeter hardware, here represented by symbolic constantAi.
Table 2 also tells us that this statement has an initial asser-
tion requiring ‘1’ to have been written to control registerT
at least10 microseconds ago. Fortunately, preceding state-
ment 43 immediately satisfies this.

(statement 43); (statement 16)

= ‘by Table 2 and Law 2’

[Busy, Tv, Tt, τ := 0, 1, Tt′, τ + 18µs |
τ < Tt′ 6 τ + 2µs] ;
[Altitude, τ := Ai, τ + 2µs]

= ‘by Laws 3 and 4’

[Altitude, Busy, Tv, Tt, τ :=
Ai, 0, 1, Tt′, τ + 20µs |
τ < Tt′ 6 τ + 2µs]

(44)

The remaining four statements within the subroutine are
semantically all simple state updates.

(statement 44); (statements 17 to 20)

= ‘by Table 2 and Laws 3 and 4’

[Altitude, Busy, B, Tv, Tt, c, τ :=
Ai ∗ 3.28, 0, Ai ∗ 3.28, 1, Tt′, Ai ∗ 3.28, τ + 28µs |
τ < Tt′ 6 τ + 2µs]

(45)

This defines the behaviour of statements 13 to 20 in
Fig. 6. We now incorporate this result into the definition of
declarative block 12. With respect to the semantics in Table 2,
we assume that it takes2 microseconds for the emulator to al-
locate or deallocate space for each integer-valued variable.

var Altitude, Busy : Z •
([τ := τ + 4µs] ; (statement 45); [τ := τ + 4µs])

= ‘by Law 3’

var Altitude, Busy : Z •
[Altitude, Busy, B, Tv, Tt, c, τ :=
Ai ∗ 3.28, 0, Ai ∗ 3.28, 1, Tt′, Ai ∗ 3.28, τ + 36µs |
τ + 4µs < Tt′ 6 τ + 6µs]

= ‘by Law 4’

var Altitude, Busy : Z •
([Altitude, Busy:= Ai ∗ 3.28, 0] ;
[B, Tv, Tt, c, τ :=
Ai ∗ 3.28, 1, Tt′, Ai ∗ 3.28, τ + 36µs |
τ + 4µs < Tt′ 6 τ + 6µs])

= ‘by Law 6’

[B, Tv, Tt, c, τ :=
Ai ∗ 3.28, 1, Tt′, Ai ∗ 3.28, τ + 36µs |
τ + 4µs < Tt′ 6 τ + 6µs]

(46)

In the final step the locally-scoped high-level language vari-
ables are eliminated.

By preceding this statement with the overhead of the
‘call’ statement we obtain the complete semantics of the first
subroutine call in Fig. 8.

call ; (statement 46)

= ‘by Table 2 and Law 3’

[B, Tv, Tt, c, τ :=
Ai ∗ 3.28, 1, Tt′, Ai ∗ 3.28, τ + 40µs |
τ + 8µs < Tt′ 6 τ + 10µs]

(47)

This block can then be placed in the context of the pre-
ceding and succeeding assembler instructions. (Again, keep
in mind the faster execution times for emulated instructions.)

(statement 40); (statement 47);
(emulated instructions 8 to 10)

= ‘by Table 1 and Laws 3 and 4’

[A, B, C, Tv, Tt,m, c, τ :=
Ai−1 ∗ 3.28, (Ai −Ai−1) ∗ 3.28 ∗ 20, 1, 1, Tt′,
m⊕ {600 7→ Ai ∗ 3.28},
(Ai −Ai−1) ∗ 3.28 ∗ 20, 56µs |
14µs < Tt′ 6 16µs]

(48)

We then encounter the second subroutine call in Fig. 8
and again calculate its semantics ‘inside out.’ The four state-

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 13

ments inside the variable block are simple state updates.

(statements 22 to 25)

= ‘by Table 2 and Laws 3 and 4’

[AscentRate, B, c, τ := B ∗ 1.25, B ∗ 1.25,
B ∗ 1.25, τ + 8µs]

(49)

As we did for the first subroutine, we can then add the over-
heads of allocating and deallocating space for variable ‘As-
centRate’, and then hide the local variable entirely.

var AscentRate: Z •
([τ := τ + 2µs] ; (statement 49); [τ := τ + 2µs])

= ‘by Laws 3, 4 and 6’

[B, c, τ := B ∗ 1.25, B ∗ 1.25, τ + 12µs] (50)

Adding the overhead of thecall statement then completes the
semantics of the second subroutine call in Fig. 8. The result
clearly matches the intention of this simple subroutine.

call ; (statement 50)

= ‘by Table 2 and Law 3’

[B, c, τ := B ∗ 1.25, B ∗ 1.25, τ + 16µs] (51)

Finally, we can put this statement in the context of the pre-
ceding code and the remaining emulated instruction to com-
plete the semantics of the emulated task.

(statement 48); (statement 51);
(emulated instruction 11)

= ‘by Table 1 and Law 3’

[A, B, C, Tv, Tt,m, c, τ :=
Ai−1 ∗ 3.28, (Ai −Ai−1) ∗ 3.28 ∗ 20 ∗ 1.25,

1, 1, Tt′,
m⊕ {600 7→ Ai ∗ 3.28,

601 7→ (Ai −Ai−1) ∗ 3.28 ∗ 20 ∗ 1.25},
(Ai −Ai−1) ∗ 3.28 ∗ 20 ∗ 1.25, 76µs |
14µs < Tt′ 6 16µs]

(52)

In particular, this result tells us that memory location600 con-
tains the sampled altitude (converted from metres to feet) and
location601 contains the difference between the last two alti-
tude samples (converted to feet) multiplied by25. The overall
execution time of the emulated task is76 microseconds.

6.4 Comparison of the Legacy and Emulated Semantics

Statements 38 and 52 confirm that the legacy and emulated
Rate tasks donot have precisely the same behaviour. There-
fore, the change impact analysis must be completed by jus-
tifying the differences in the light of the Mission Computer
System’s hardware upgrade. In particular, the major concerns
for code in a multi-tasking Operational Flight Program are:
the task’s functional behaviour; code that is dependent on in-
struction execution speeds; and code that depends on the fre-
quency of task invocations.

Overall, the Rate task’s functional behaviour is preserved.
The semantics show that both versions update memory loca-
tions600 and601 (and general-purpose registersA, B andC,
and the comparison registerc). The legacy task writes to
port P, whereas the emulated one uses portT, but this is
explained by the replacement of the Analog-to-Digital Con-
verter. Also, recalling that the old altimeter was calibrated in
feet, while the new one produces readings in metres, explains
the way that the emulated task scales all altimeter readingsAi

by 3.28, to maintain consistency with the legacy code. (No-
tably, the altitude stored by the emulated task in location600
is measured in feet, so that other tasks accessing this value are
not impacted by the changes to the Rate task. Similarly, for
the ascent rate stored by the emulated task in location601.)

With regard to instruction execution speeds, the most ob-
vious difference is that the legacy Rate task takes95 mi-
croseconds where the emulated one takes only76. However,
a fastertask execution time is (usually) acceptable in cyclic-
executive scheduling because it makes it easier for the task
invocations to fit into their frame. (Curiously, this ‘improve-
ment’ can change the behaviour of some systems by allow-
ing tasks that previously always overran the frame to run to
completion.) More importantly, we must beware of task code
that relies for its correctness on instruction execution speeds.
The busy-wait loop at labelADCDELAYin Fig. 3 has this
characteristic but, in this case, the programmer has correctly
patched the code with the subroutine in Fig. 6. The semantics
show that both versions of the task successfully sample alti-
tudes from their respective ADCs, when the specific timing
characteristics of the hardware interface are included. (The
timestamps associated with output portsP andT also reveal
that the two versions of the task access their ADCs at differ-
ent times, relative to the task’s starting time, but the absolute
timing of i/o eventswithin a task invocation is usually unim-
portant in a cyclic executive design.)

Finally, we must consider code that depends on the fre-
quency of task invocations. Typically, the programmer of
a periodic task relies on the task being invoked regularly
(with as little ‘jitter’, i.e., variation between successive in-
vocations, as possible) but theabsolutetiming of frames is
unimportant. Generally speaking, there is no definable rela-
tionship between an altitudeAi sampled by the legacy task
and the corresponding altitudeAi sampled by the emulated
task. (Even if the two systems were started at the same time,
the different task frequencies would mean that these two
values are unrelated.) Whatis meaningful in this applica-
tion, however, is the difference betweenconsecutivesamples.
Thus, expression ‘(Ai − Ai−1) ∗ 20’ in the legacy task’s se-
mantics denotes the change in altitude in one second. The
corresponding expression in the emulated task’s semantics,
‘(Ai−Ai−1) ∗ 20 ∗ 1.25’, is meant to denote the same value.
To allow for the fact that minor cycles are50 milliseconds
long in the legacy system but only40 milliseconds long in
the emulated system, the emulated task correctly scales the
measurement by5040 = 1.25.

We have now accounted for all the significant differences
between the legacy and emulated semantics and can thus con-

14 C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software

clude that the emulated system is indeed a satisfactory re-
placement for the legacy one.

7 Conclusion

Changes to safety and mission-critical control systems must
be made with utmost care. Ideally, therefore, formal tech-
niques should be used for change impact analyses of control
systems reimplemented using processor emulation. We have
shown how this can be done by pragmatically combining se-
mantic modelling with an intuitive understanding of the old
and new software architectures.

In particular, we identified an elegant modelling notation
based on relational assignments, defined a common seman-
tics for actions of both the legacy and emulated systems in
terms of the legacy processor’s state, modelled essential tim-
ing properties via a special time variable, captured impor-
tant features of external hardware devices in the semantics
of the statements that access them, and formally calculated
the semantics of both the old and new software. The impact
of the software upgrade on the system’s behaviour was thus
clearly revealed, potentially alerting the programmer to unan-
ticipated side effects, and providing an opportunity to justify
any differences in terms of the specific application.

In current research we are investigating ways in which
the theory described in this paper can be made more acces-
sible to practising programmers. For instance, a significant
issue is how the program code that needs to be modified in
response to hardware changes can be identified. We have al-
ready achieved promising results through dimensional analy-
sis, using compiler-like type inference, to allow statements
whose units of measurement have been invalidated by the
hardware change to be identified automatically.

Acknowledgements.I wish to thank Geoffrey Watson for his in-
sights into the airworthiness certification issues associated with pro-
cessor emulation and Luke Wildman for advice on relational pro-
gram semantics. This research was funded by Australian Research
Council Large Grant A00104650,Verified Compilation Strategies
for Critical Computer Programs.

References

1. R.-J. Back and J. von Wright.Refinement Calculus: A System-
atic Introduction. Springer-Verlag, 1998.

2. R.-J. R. Back and J. von Wright. Refinement calculus, part I:
Sequential nondeterministic programs. In J. W. de Bakker, W.-
P. de Roever, and G. Rozenberg, editors,Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness (REX
Workshop 1989), volume 430 ofLecture Notes in Computer Sci-
ence, pages 42–66. Springer-Verlag, 1989.

3. T. P. Baker and A. Shaw. The cyclic executive model and Ada.
Journal of Real-Time Systems, 1(1):7–26, June 1989.

4. L. Beus-Dukic. COTS real-time operating systems in space.
Safety Systems: The Safety-Critical Systems Club Newsletter,
10(3):11–14, May 2001.

5. E. Börger and I. Durdanović. Correctness of compiling occam
to transputer code.The Computer Journal, 39(1):52–92, 1996.

6. C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-
level language translation. InProceedings of the International
Conference on Software Maintenance, pages 228–237. IEEE
Computer Society Press, 1998.

7. R. A. Comfort. The economics of microprocessor obsoles-
cence.COTS Journal, pages 21–23, July/August 1998.

8. D. Corman, P. Goertzen, J. Luke, and M. Mills. Incremental
Upgrade of Legacy Systems (IULS): A fundamental software
technology for aging aircraft. InFourth Joint DOD/FAA/NASA
Conference on Aging Aircraft, 2000.

9. D. Culpin. Overcoming technology lag in mission computers.
Australian Defence Science, 11(1):4–5, 2003.

10. E. W. Dijkstra and C. S. Scholten.Predicate Calculus and Pro-
gram Semantics. Springer-Verlag, 1990.

11. J. D. G. Falardeau. Schedulability analysis in rate monotonic
based systems with application to the CF-188. Master’s the-
sis, Department of Electrical and Computer Engineering, Royal
Military College of Canada, May 1994.

12. C. J. Fidge. Timing analysis of assembler code control-flow
paths. In L.-H. Eriksson and P. Lindsay, editors,FME 2002:
Formal Methods—Getting IT Right, volume 2391 ofLecture
Notes in Computer Science, pages 370–389. Springer-Verlag,
2002.

13. C. J. Fidge. Verifying emulation of legacy mission computer
systems. In K. Araki, S. Gnesi, and D. Mandrioli, editors,FME
2003: Formal Methods, volume 2805 ofLecture Notes in Com-
puter Science, pages 187–207. Springer-Verlag, 2003.

14. P. Gust.Introduction to Machine and Assembly Language Pro-
gramming. Prentice-Hall, 1986.

15. I. J. Hayes and M. Utting. A sequential real-time refinement
calculus.Acta Informatica, 37(6):385–448, 2001.

16. J. Hooman. Extending Hoare logic to real-time.Formal Aspects
of Computing, 6(6A):801–825, 1994.

17. D. Kalinsky. Context switch.Embedded Systems Programming,
14(2):94–105, February 2001.

18. K. Kleiner. I♥ Space Invaders.New Scientist, (2313):46–48,
October 2001.

19. K. Lermer and C. J. Fidge. A formal model of real-time pro-
gram compilation.Theoretical Computer Science, 282(1):151–
190, July 2002.

20. L. A. Leventhal. Introduction to Microprocessors: Software,
Hardware and Programming. Prentice-Hall, 1978.

21. C. D. Locke. Software architecture for hard real-time applica-
tions: Cyclic executives vs. fixed priority executives.The Jour-
nal of Real-Time Systems, 4:37–53, 1992.

22. C. D. Locke, D. R. Vogel, L. Lucas, and J. B. Goodenough.
Generic avionics software specification. Technical Report
CMU/SEI-90-TR-8, Software Engineering Insititute, Carnegie
Mellon University, December 1990.

23. J. A. Luke, D. G. Haldeman, and W. J. Cannon. A COTS-based
replacement strategy for aging avionics computers.CrossTalk—
The Journal of Defense Software Engineering, pages 14–17,
December 2001.

24. C. Morgan.Programming from Specifications. Prentice-Hall,
1990.

25. M. Müller-Olm. Modular Compiler Verification: A Refinement-
Algebraic Approach Advocating Stepwise Abstraction, volume
1283 ofLecture Notes in Computer Science. Springer-Verlag,
1997.

C. J. Fidge: Formal Change Impact Analyses for Emulated Control Software 15

26. RTCA, Inc. Software Considerations in Airborne Systems and
Equipment Certification, December 1992. Special Committee
167 Document No. RTCA/DO-178B.

27. A. Sampaio.An Algebraic Approach to Compiler Design, vol-
ume 4 ofAMAST Series in Computing. World Scientific, 1997.

28. D. Scholefield. Real-time refinement in Manna and Pnueli’s
temporal logic. Formal Aspects of Computing, 8(4):408–427,
1996.

29. E. Sekerinski. A calculus for predicative programming. In R. S.
Bird, C. C. Morgan, and J. C. P. Woodcock, editors,Mathemat-
ics of Program Construction (MPC’93), volume 669 ofLecture
Notes in Computer Science, pages 302–322. Springer-Verlag,
1993.

30. A. C. Shaw. Reasoning about time in higher-level lan-
guage software.IEEE Transactions on Software Engineering,
15(7):875–889, July 1989.

31. J. M. Spivey.Understanding Z: A Specification Language and
its Formal Semantics, volume 3 ofCambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, January
1988.

32. S. Stepney.High Integrity Compilation: A Case Study. Prentice-
Hall, 1993.

33. D. B. Stewart. 30 pitfalls for real-time software developers,
part 1.Embedded Systems Programming, 12(1):32–41, October
1999.

34. TRW Inc. Emulator Application Programming Interface (API)
for the 1750A Virtual Component Environment (VCE1750A).
Technical Report HML-API-001, TRW Dayton Engineering
Laboratory, March 2001. Revision D.

35. U.S. Department of Transportation Federal Aviation Adminis-
tration. Guidelines for the Oversight of Software Change Im-
pact Analyses Used to Classify Software Changes as Major or
Minor, 2000. FAA Notice N8110.85.

36. U.S. Department of Transportation Federal Aviation Adminis-
tration. Guidelines for the Approval of Software Changes in
Legacy Systems Using RTCA DO-178B, 2001. FAA Notice
N8110.89.

A Semantics of Modelling Language Primitives

Section 5.1 above introduced several well-known primitives
for modelling programming language code. For complete-
ness, this appendix presents their weakest precondition se-
mantics. In particular, these definitions are sufficient to prove
the correctness of the laws in Section 6.1.

A weakest precondition, wp.S.R, is a predicate charac-
terising those initial states from which statementS is guar-
anteed to terminate in a state satisfying a given postcondition
predicateR [10, p. 128]. The full stops denote left-associative
function application, so wp.S.R is equivalent to(wp(S))(R)
and wp.S is thus a higher-order function on predicates, called
apredicate transformer.

Table 3 gives the weakest precondition semantics for our
modelling language primitives. LetP and R be predicates
on the program state;v be a program variable;T be a type;
G be a predicate on the program state which may also refer
to v′; S be a statement in our modelling language;X be a
statement-valued variable; andS(X) be a compound state-
ment that may contain ‘X ’ where a statement is expected.

Table 3.Weakest precondition semantics for modelling language primitives

StatementS Semantics wp.S.R

[P] P ⇒ R

{P} P ∧R

[v := v′ | G] (∃v′ •G) ∧ (∀v′ •G ⇒ R[v′/v])
S1 ; S2 wp.S1.(wp.S2.R)
var v : T • S

∧
v∈T wp.S.R, for v not free inR

S1 u S2 wp.S1.R ∧ wp.S2.R

rec X • S(X) (µX • S(X)).R

Also letµX •S(X) denote the least fixed point of the higher-
order function wp.S(X) [1, §20.1]. In other words, it is a
statementX such thatX = S(X). Where there is more that
one such statement we choose the ‘worst’ one in the sense
that it is the least deterministic and is guaranteed to terminate
from the smallest set of initial states.

The semantics for most of the primitives in Table 3 are
conventional. For an assertion{P} to achieve postcondi-
tion R it must be the case thatR already holds and that the
program has already madeP true [1, p. 189]. Similarly, an
assumption[P] can makeR true only ifR already holds, but
the statement is obliged to be well-behaved only if the pro-
gram’s environment has establishedP [1, p. 189]. Sequential
composition ‘S1 ; S2’ is modelled as functional composition
of the predicate transformers corresponding to the two state-
ments [1, p. 189]. A variable declaration ‘var v : T • S’ will
makeR true provided that statementS does so for any ini-
tial value of freshly-declared variablev. The semantics has a
proviso that says variablev may not occur free in postcondi-
tion predicateR, thus forcing ‘v’ to be a previously unused
name [1, p. 227]. To guarantee that a demonic nondetermin-
istic choice ‘S1 u S2’ makesR true, both alternatives must
establishR [1, p. 189]. For a recursive construct to achieveR,
the least fixed point of the statement must do so.

The only uncommon statement in Table 3 is the relational
assignment,[v := v′ | G]. Here we use the ‘strict’ form [2,
p. 58] which is well-behaved only if there exists some final
valuev′ that makesG true. This is appropriate for our case
study since we model executable programming language con-
structs only, and avoid operators such as division that may be
undefined for certain values of their operands. The second
conjunct in the semantics says that such an assignment will
achieve postconditionR, reexpressed using variablev’s final
valuev′, provided thatR is established by any final valuev′

that satisfiesG.

