3,945 research outputs found

    An Adult with Episodic Abnormal Limb Posturing

    Get PDF
    info:eu-repo/semantics/publishedVersio

    An anti-Schwarzshild solution: wormholes and scalar-tensor solutions

    Full text link
    We investigate a static solution with an hyperbolic nature, characterised by a pseudo-spherical foliation of space. This space-time metric can be perceived as an anti-Schwarzschild solution, and exhibits repulsive features. It belongs to the class of static vacuum solutions termed "a degenerate static solution of class A". In the present work we review its fundamental features, discuss the existence of generalised wormholes, and derive its extension to scalar-tensor gravity theories in general.Comment: 3 pages, contribution to the proceedings of the Spanish Relativity Meeting-ERE200

    Cosmological solutions in generalized hybrid metric-Palatini gravity

    Full text link
    We construct exact solutions representing a Friedmann-Lema\^itre-Robsertson-Walker (FLRW) universe in a generalized hybrid metric-Palatini theory. By writing the gravitational action in a scalar-tensor representation, the new solutions are obtained by either making an ansatz on the scale factor or on the effective potential. Among other relevant results, we show that it is possible to obtain exponentially expanding solutions for flat universes even when the cosmology is not purely vacuum. We then derive the classes of actions for the original theory which generate these solutions.Comment: 14 pages, 17 figure

    On the Sensitivity of a Hollow Sphere as a Multi-modal Resonant Gravitational Wave Detector

    Full text link
    We present a numerical analysis to simulate the response of a spherical resonant gravitational wave detector and to compute its sensitivity. Under the assump- tion of optimal filtering, we work out the sensitivity curve for a sphere first taking into account only a single transducer, and then using a coherent analysis of the whole set of transducers.Comment: 24 pages, 11 figures, published versio

    On-ground tests of LISA PathFinder thermal diagnostics system

    Full text link
    Thermal conditions in the LTP, the LISA Technology Package, are required to be very stable, and in such environment precision temperature measurements are also required for various diagnostics objectives. A sensitive temperature gauging system for the LTP is being developed at IEEC, which includes a set of thermistors and associated electronics. In this paper we discuss the derived requirements applying to the temperature sensing system, and address the problem of how to create in the laboratory a thermally quiet environment, suitable to perform meaningful on-ground tests of the system. The concept is a two layer spherical body, with a central aluminium core for sensor implantation surrounded by a layer of polyurethane. We construct the insulator transfer function, which relates the temperature at the core with the laboratory ambient temperature, and evaluate the losses caused by heat leakage through connecting wires. The results of the analysis indicate that, in spite of the very demanding stability conditions, a sphere of outer diameter of the order one metre is sufficient. We provide experimental evidence confirming the model predictions.Comment: 18 pages, 5 figures, LaTeX2e (compile with pdflatex), sumbitted to CQG. This paper is a significant extension of gr-qc/060109

    The LISA PathFinder DMU and Radiation Monitor

    Get PDF
    The LISA PathFinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.Comment: 11 pages, 7 figures, prepared for the Proceedings of the 8th International LISA Symposium, Classical and Quantum Gravit

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field

    Infrared phonon dynamics of multiferroic BiFeO3 single crystal

    Full text link
    We discuss the first infrared reflectivity measurement on a BiFeO3 single crystal between 5 K and room temperature. The 9 predicted ab-plane E phonon modes are fully and unambiguously determined. The frequencies of the 4 A1 c-axis phonons are found. These results settle issues between theory and data on ceramics. Our findings show that the softening of the lowest frequency E mode is responsible for the temperature dependence of the dielectric constant, indicating that the ferroelectric transition in BiFeO3 is soft-mode driven.Comment: 5 pages (figures included
    corecore