414 research outputs found

    Immunobiology of Japanese Encephalitis Virus

    Get PDF

    Pivotal Role of Antibody and Subsidiary Contribution of CD8+ T Cells to Recovery from Infection in a Murine Model of Japanese Encephalitis

    Get PDF
    The immunological correlates for recovery from primary Japanese encephalitis virus (JEV) infection in humans and experimental animals remain poorly defined. To investigate the relative importance of the adaptive immune responses, we have established a mouse model for Japanese encephalitis in which a low-dose virus inoculum was administered into the footpads of adult C57BL/6 mice. In this model, ~60% of the mice developed a fatal encephalitis and a virus burden in the central nervous system (CNS). Using mice lacking B cells (μMT-/- mice) and immune B cell transfer to wild-type mice, we show a critically important role for humoral immunity in preventing virus spread to the CNS. T cell help played an essential part in the maintenance of an effective antibody response necessary to combat the infection, since mice lacking major histocompatibility complex class II showed truncated IgM and blunted IgG responses and uniformly high lethality. JEV infection resulted in extensive CD8+ T cell activation, judged by upregulation of surface markers CD69 and CD25 and cytokine production after stimulation with a JEV NS4B protein-derived H-2Db-binding peptide and trafficking of virus-immune CD8+ T cells into the CNS. However, no significant effect of CD8+ T cells on the survival phenotype was found, which was corroborated in knockout mice lacking key effector molecules (Fas receptor, perforin, or granzymes) of cytolytic pathways triggered by T lymphocytes. Accordingly, CD8+ T cells are mostly dispensable for recovery from infection with JEV. This finding highlights the conflicting role that CD8+T cells play in the pathogenesis of JEV and closely related encephalitic flaviviruses such as West Nile virus

    Virulence attenuation of Dengue virus due to augmented glycosaminoglycan-binding affinity and restriction in extraneural dissemination

    Get PDF
    To gain insight into the role of cell surface glycosaminoglycans (GAG) in dengue virus (DEN) cell tropism and virulence, DEN-2 mouse brain-adapted vaccine candidate, neurovirulent prototype strain (NGC) and low-passage strain, PUO-218, were passaged in BHK-21 and SW13 cells to isolate variants with high affinity for GAG. Sequence comparisons of parent and passage variants revealed five GAG-binding determinants, which all cluster in a surface-exposed region in domain II of the three-dimensional structure of the DEN envelope protein. Using an infectious cDNA clone of NGC and an NGC/PUO-218 prM-E chimeric clone, it was demonstrated that the GAG-binding determinants augment the specific infectivity for BHK-21 and/or SW13 cells by 10- to 170-fold and in some cases marginally reduce that for Vero cells. This altered cell tropism was due to a greater dependence of the variants on cell surface GAG for attachment/entry, given their increased susceptibility to heparin inhibition. The effect of the GAG-binding determinants on virulence was examined in mice deficient in alpha/beta/gamma interferon responses. High GAG affinity strongly correlated with low neuroinvasiveness due to rapid virus clearance from the blood. It was speculated that this mechanism accounts for the attenuation in primates of some DEN vaccine candidates. Interestingly, the GAG-binding variants did not display marked attenuation of neurovirulence and the opposing effect of enhanced neurovirulence was associated with one determinant (Lys126) already present in mouse brain-adapted NGC. This discrepancy of attenuated neuroinvasiveness and augmented neurovirulence may be reconciled by the existence of different mechanisms of virus dissemination in the brain and in extraneural tissues

    Coopetition is King: Ökonomische Potentiale und medienpolitische Implikationen kooperativer Journalismusplattformen

    Get PDF
    Die vorliegende Studie geht der Fragestellung nach, wie sich eine anbieterübergreifende, abonnementbasierte Plattform für den digitalen Journalismus, also eine Art Spotify im Journalismus, auf die Umsätze der Anbieter journalistischer Inhalte und die Abonnements im Digitaljournalismus in Deutschland auswirken würde

    Intranasal Flu Vaccine Protective against Seasonal and H5N1 Avian Influenza Infections

    Get PDF
    Background Influenza A (flu) virus causes significant morbidity and mortality worldwide, and current vaccines require annual updating to protect against the rapidly arising antigenic variations due to antigenic shift and drift. In fact, current subunit or split flu vaccines rely exclusively on antibody responses for protection and do not induce cytotoxic T (Tc) cell responses, which are broadly cross-reactive between virus strains. We have previously reported that γ-ray inactivated flu virus can induce cross-reactive Tc cell responses. Methodology/Principal Finding Here, we report that intranasal administration of purified γ-ray inactivated human influenza A virus preparations (γ-Flu) effectively induces heterotypic and cross-protective immunity. A single intranasal administration of γ-A/PR8[H1N1] protects mice against lethal H5N1 and other heterotypic infections. Conclusions/Significance Intranasal γ-Flu represents a unique approach for a cross-protective vaccine against both seasonal as well as possible future pandemic influenza A virus infections.Mohammed Alsharifi, Yoichi Furuya, Timothy R. Bowden, Mario Lobigs, Aulikki Koskinen, Matthias Regner, Lee Trinidad, David B. Boyle and Arno Müllbache

    An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses

    Get PDF
    Advax is a polysaccharide-based adjuvant that potently stimulates vaccine immunogenicity without the increased reactogenicity seen with other adjuvants. This study investigated the immunogenicity of a novel Advax-adjuvanted Vero cell culture candidate vaccine against Japanese encephalitis virus (JEV) in mice and horses. The results showed that, in mice, a two-immunization, low-dose (50 ng JEV antigen) regimen with adjuvanted vaccine produced solid neutralizing immunity comparable to that elicited with live ChimeriVax-JE immunization and superior to that elicited with tenfold higher doses of a traditional non-adjuvanted JEV vaccine (JE-VAX; Biken Institute) or a newly approved alum-adjuvanted vaccine (Jespect; Novartis). Mice vaccinated with the Advax-adjuvanted, but not the unadjuvanted vaccine, were protected against live JEV challenge. Equine immunizations against JEV with Advax-formulated vaccine similarly showed enhanced vaccine immunogenicity, confirming that the adjuvant effects of Advax are not restricted to rodent models. Advax-adjuvanted JEV vaccine elicited a balanced T-helper 1 (Th1)/Th2 immune response against JEV with protective levels of cross-neutralizing antibody against other viruses belonging to the JEV serocomplex, including Murray Valley encephalitis virus (MVEV). The adjuvanted JEV vaccine was well tolerated with minimal reactogenicity and no systemic toxicity in immunized animals. The cessation of manufacture of traditional mouse brain-derived unadjuvanted JEV vaccine in Japan has resulted in a JEV vaccine shortage internationally. There is also an ongoing lack of human vaccines against other JEV serocomplex flaviviruses, such as MVEV, making this adjuvanted, cell culture-grown JEV vaccine a promising candidate to address both needs with one vaccine

    The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice

    Get PDF
    Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections

    The relationships between West Nile and Kunjin viruses.

    Get PDF
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses
    corecore