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Immunobiology of Japanese Encephalitis Virus 
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Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, 

The Australian National University, Canberra, ACT 
Australia 

1. Introduction 

Japanese encephalitis (JE) is an acute central nervous system inflammatory disease cause by 
infection with Japanese encephalitis virus (JEV), a small, enveloped, plus-strand RNA virus 
belonging to the family Flaviviridae. It is the leading cause of viral encephalitis in South-East 
Asia, India and China, where 3 billion people are at risk of contracting the disease (Erlanger 
et al., 2009). Annually, about 35,000 cases of JE are reported, resulting in about 10,000 deaths 
and a high incidence of neuropsychiatric deficits among survivors. Treatment of JE patients 
is supportive and in the absence of availability of antiviral compounds the mainstay of 
protection against JE is vaccination (Halstead & Thomas, 2011). In the past decades there has 
been an expansion of the geographic distribution of the virus in Asia and the Asia-Pacific 
region (van den Hurk et al., 2009) and there is an urgent requirement for improved human 
and veterinary JE vaccines. An understanding of the immunological responses that lead to 
recovery from infection with JEV and account for vaccine-mediated protection is important 
in the design of rational approaches to new treatments and vaccines against the disease, and 
will be the focus of this review. 

1.1 Clinical manifestations  

Infection with JEV starts with a bite of an infected Culex mosquito, although the possibility 
of transplacental transmission has been demonstrated in mice, swine and humans 
(Chaturvedi et al., 1980; Mathur et al., 1981; Morimoto et al., 1972). The infection is largely 
subclinical with only 1:50 to 1:10,000 human infections resulting in symptomatic disease 
(Tsai, 2000). The clinical features of infection range from a non-specific febrile illness, aseptic 
meningitis, poliomyelitis-like syndrome, to a severe meningoencephalomyelitis (Solomon, 
2003; Solomon et al., 2000; Solomon et al., 1998). The incubation period is from 5 to 15 days 
before onset of prodromal symptoms, which include fever, generalized weakness, coryza, 
diarrhoea, and rigors. Afterwards, patients experience headache, vomiting, decreased 
sensorium, and convulsion. Then a classic presentation ensues, including dull, flat, mask-
like facies with wide unblinking eyes, tremor, generalized hypertonia and cogwheel rigidity. 
Other signs and symptoms found in a subset of patients include generalized tonic-clonic 
seizures, focal seizures, upper motor neuron facial nerve palsy, extrapyramidal manifestations, 
asymmetric paralysis, and mental illness. Occasional extrapyramidal symptoms include non-
intention tremors, cogwheel rigidity, head nodding and pill rolling movements, opsoclonus, 
myoclonus, choreoathetosis, and bizarre facial grimacing and lip smacking (Solomon et al., 
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2000). The case fatality ratio can be as high as 50-60 % (Tsai, 2000), and one half of the 
survivors have long-term neurologic or psychiatric sequelae (Solomon, 2003). 

1.2 Animal models 

JE is also a veterinary disease with occasional fatal outcome in horses, and abortions and 
abnormal births in pigs (Halstead & Jacobson, 2003). While pigs can act as amplifier host in 
the transmission cycle of the virus, JEV infection of horses, like that of humans, does not 
generate sufficient viremia for virus transmission. The clinical course of JE in horses 
resembles that found in humans (Gould et al., 1964; Lam et al., 2005; Miyake, 1964; 
Yamanaka et al., 2006). Mice have been most extensively used as a model for studies on the 
pathogenesis of JEV (Kimura et al., 2010) and show significant similarity to natural human 
infection. Notably, extraneural infection of adult mice frequently does not result in 
detectable viremia or virus burden in extraneural tissues, although some animals will 
develop CNS infection with mostly fatal outcome (Larena et al., 2011). Age, genetic 
background and route of inoculation are risk factors for severe encephalitis (Grossberg & 
Scherer, 1966; Larena et al., 2011). The pathologic changes seen in mouse brain infected with 
JEV are similar to those observed in humans, with perivascular cuffs, cellular infiltrates, and 
mild vascular damage (German et al., 2006). Interestingly, there is a lack of a dose response 
in mortality in mice following virus challenge by an extraneural route (Larena et al., 2011). 
This is thought to reflect, at least in part, induction of more vigorous innate immune 
responses critical in early control of virus dissemination with increasing amount of virus 
used for infection (Monath et al., 2003). 
To investigate the immunological correlates for recovery and protection from JEV infection, 
the animal model should resemble the natural infection route and virus dose, and the 
animals should have a mature immune system and intact blood-brain-barrier. We have 
shown that in groups of 8- to 12-week-old mice after footpad challenge with 103 PFU of JEV 
(prototype strain Nakayama) ~50% of animals present with clinical signs of infection 
starting at day 10 post-infection (pi), which included progressive generalized paresis, 
piloerection and rigidity. Severe neurological impairment demonstrated by ataxia, postural 
imbalance, and generalized tonic-clonic seizures is evident later in the course of infection, 
invariably leading to fatality within 24 - 36 h after disease onset (Larena et al., 2011). 
Histopathological examination at day 10 pi with JEV reveals hallmarks of acute viral 
encephalitis, including microglial nodules surrounding degenerating neurons, meningeal 
inflammation, and widespread perivascular leukocytic infiltration. Immunohistochemical 
staining reveals JEV infected neurons in multiple loci, predominantly localized in the 
following areas: cerebral cortex, hippocampus, thalamus, brainstem and cerebellum. The 
initial local site of JEV replication following footpad infection probably involves dendritic 
cells, given the evidence that they support JEV replication (Aleyas et al., 2009; Cao et al., 
2011; Li et al., 2010). Local spread then ensues with peak viremia and splenic viral load, 
detectable only by real time RT-PCR, peaking at day 2 and day 4, respectively (Larena et al., 
2011). Subsequently, virus enters the brain.  Putative mechanisms for virus invasion into the 
CNS include i) hematogenous spread, ii) entry through olfactory neurons, iii) retrograde 
axonal transport through peripheral nerves, iv) a “Trojan horse” mechanism through 
infected monocytes and v) transcytosis through the endothelial cells of the blood-brain-
barrier. JEV infection of neurons is accompanied by a local inflammatory reaction. This 
induces the release of chemokines stimulating CCR5-dependent migration of leukocytes 
into the brain parenchyma (Larena and Lobigs, unpublished). Virus clearance from the CNS 
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is complicated by the irreplaceable nature of neurons and the fact that neuronal damage can 
be caused directly by virus infection or by infiltrating leukocytes in response to the infection 
(Griffin, 2011). 

2. Innate immunity 

2.1 Sensing of the pathogen 

Host cells detect distinct conserved molecular signatures (pathogen associated molecular 
patterns: PAMPs) of invading viruses through germ-line encoded transmembrane or 
cytosolic pathogen recognition receptors (PRRs) (Bowie & Unterholzner, 2008). This initial 
sensing and recognition is of paramount importance in viral immunobiology, where 
activating intracellular signalling cascades ultimately lead to the induction of antiviral, 
inflammatory and adaptive immune responses. Transmembrane PRRs include C-type lectin 
receptors (CLRs) and the widely studied toll-like receptors (TLRs), both of which are up-
regulated after JEV infection (Gupta & Rao, 2011).  CLRs contain carbohydrate recognition 
domains interacting with mannose, fucose, and glucan carbohydrate structures of pathogens 
(Geijtenbeek & Gringhuis, 2009). A particular CLR, C-type lectin domain family 5 
(CLEC5A), is highly expressed after JEV infection and is associated with a proinflammatory 
profile (Gupta et al., 2010). Considering the role of CLEC5A in the immunopathology of 
dengue hemorrhagic fever (Chen et al., 2008), it can be postulated also to have a key role in 
the pathologic process of JE neuroinflammation.  
TLRs are composed of a leucine-rich repeat-containing ectodomain, a transmembrane 
domain and an intracellular Toll–interleukin 1 receptor (TIR) domain (Kawai & Akira, 2010). 
The ectodomain mediates recognition of PAMPs, while the intracellular TIR domain 
mediates downstream signal transduction. TLR signaling, except that via TLR3, requires the 
TIR-domain adaptor molecule, MyD88, and therefore can be prevented by MyD88 knock-
out (Kawai & Akira, 2010).  In the absence of MyD88, bone marrow-derived macrophages 
and dendritic cells infected with JEV have reduced production of inflammatory cytokines 
interleukin (IL)-6, IL-10, IL-12, and tumour necrosis factor (TNF)-ǂ (Aleyas et al., 2009). This 
supports a role of TLR signalling through MyD88 in shaping the immune responses to JEV. 
However, this is not reflected in a markedly altered disease outcome, given that MyD88-/- 
mice only show a partial impairment in interferon (IFN)-ǂ production and similar 
susceptibility to JEV in comparison to wild-type mice (Kato et al., 2006), suggesting a 
redundancy in pathways for recognition of JEV infection.  
Cytosolic PRRs are essential for detecting pathogens invading the cytosol.  They are 
classified into nucleotide binding oligomerization domain (NOD)-like and retinoic acid-
inducible gene (RIG)-1-like receptors (Wilkins & Gale, 2010). NOD-like receptors, NOD2 
and NLRP3, recognize ssRNA and dsRNA, respectively, and have significant antiviral 
activity through IFN signalling. Both proteins are expected to recognize flaviviral genomic 
RNA, although their role in JEV infection remains to be investigated. RIG-1-like receptors, 
also known as RNA helicases, have a conserved DExD/H box helicase domain and a C-
terminal regulatory domain among the three recently identified members, RIG-1, melanoma 
differentiation-associated antigen 5 (MDA-5) and laboratory of genetics and physiology 2 
(LGP2) (Wilkins & Gale, 2010). The C-terminal regulatory domain serves as the recognition 
site for sensing ssRNA and dsRNA. Kato et al (2006) have shown that RIG-1 receptor 
signaling, but not that via MDA-5, is critical for the antiviral response against JEV: RIG-1-/-, 
but not MDA-5-/- mice, display impaired type 1 IFN production and increased susceptibility 
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to JEV infection. LGP2 was initially reported as a dominant negative regulator of RIG-1 and 
MDA-5 signalling (Komuro & Horvath, 2006; Murali et al., 2008); however, Satoh et al (2010) 
have demonstrated that bone marrow-derived dendritic cells from LGP2-/- mice infected with 
JEV have an impaired production of IFN-ǃ, indicating that LGP2 functions upstream of RIG-1 
and MDA-5 to potentiate viral RNA-induced signalling as a positive regulator.  

2.2 Type 1 interferon induction and signalling 

Interferons (IFNs) are a group of cytokines first discovered based on their antiviral activity 
against influenza (Borden et al., 2007). Three families of IFNs, type I, type II and the recently 
identified type III can be distinguished. Type I IFNs include multiple IFN-ǂ subsets, a single 
IFN-ǃ, IFN-ω, and the recently discovered IFN-ǆ (Hardy et al., 2004). All members bind to 
the same cell surface receptor, and are located in a single gene cluster both in humans and in 
mice. In addition to their antiviral activity, type I IFNs are key to efficient establishment of 
the adaptive immune responses (Borden et al., 2007). Type III IFNs (IFN-ǌ1, -ǌ2 and -ǌ3) are 
new members of the IFN superfamily first discovered in 2003 and shown to be related to 
type I IFN (Ank et al., 2006). However, they differ by signalling through a receptor complex 
that is different from that used by type I IFNs. Numerous RNA and DNA viruses induce 
and are sensitive to IFN-ǌs, although it remains unclear if type III IFNs are important in the 
host response against JEV infection. Type II IFN consists of a single cytokine, IFN-Ǆ, and its 
function in JEV infection is described in Section 2.3. 
IFN production after JEV infection was initially documented in mice (Rokutanda, 1969) and 
later in humans  (Burke & Morill, 1987). Early in vitro and in vivo animal studies depicting 
its significance as an antiviral compound against JEV employed the use of IFN inducers 
(Ghosh et al., 1990; Taylor et al., 1980) and recombinant IFN-ǂ (Crance et al., 2003). 
Furthermore, mice deficient in IFN-ǂ receptor infected with JEV show sustained high 
viremia and fulminant disease (Lee et al., 2004; Lee & Lobigs, 2002; Lobigs et al., 2009), 
demonstrating that type I IFN is a key tropism determinant of JEV. 
IFN gene expression is induced by the binding of PRR-activated transcription factors to their 
promoters (Borden et al., 2007). They include IFN regulatory factor (IRF) proteins and NF-ǋB 
(Honda et al., 2006; Tenoever et al., 2007). In the case of JEV infection, RIG-1-dependent IRF-3 
and phosphatidylinositol-3 kinase-dependent NF-ǋB activation is essential for IFN 
production (Chang et al., 2006). NF-ǋB-dependent and NF-ǋB-independent mechanisms of 
IFN induction after JEV infection have been suggested by Abraham et al (2010).  Binding of 
IFN to its cognate receptor at the cell surface triggers a signalling cascade, the Janus kinase - 
signal transducer and activation of transcription (Jak-Stat) pathway, ultimately triggering 
IFN-stimulated response element and expression of IFN-stimulated genes (ISGs). ISGs serve 
as mediators of IFN action directed towards initiation of antiviral and immunoregulatory 
functions (Borden et al., 2007). Antiviral proteins associated with flaviviral infections include 
double-stranded RNA-activated protein kinase (PKR), the 2’,5’-oligoadenylate synthetases 
(2’-5’-OAS), ISG15, ISG20, viperin and IFN-induced transmembrane proteins (Brass et al., 
2009; Hsiao et al., ; Jiang et al., 2010; Kajaste-Rudnitski et al., 2006; Samuel et al., 2006). Of 
these, 2’-5’-OAS proteins are the most widely studied and acts through activation of RNase 
L, a potent endoribonuclease that cleaves viral RNA (Silverman, 2007). The critical role of 2’-
5’-OAS in the control of West Nile virus (WNV) infection was first reported in mice 
(Mashimo et al., 2002; Perelygin et al., 2002) and recently in horses and humans, where 
distinct OAS1a gene polymorphisms were identified as a risk factor (Lim et al., 2009; Rios et 
al., 2010). Given the association of OAS with the flavivirus-resistance phenomenon in mice 
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(Brinton & Perelygin, 2003), this ISG most likely also plays an important role in recovery 
from JEV infection. ISG-15 is an additional ISG recently documented to be involved in the 
control of JEV infection (Hsiao et al., 2010). 
Considering its antiviral action, the therapeutic potential of recombinant IFN in human 
cases of JE has been investigated. While an initial study suggested a benefit (Harinasuta et 
al., 1985), a subsequent randomised double-blind placebo-controlled clinical trial did not 
(Solomon et al., 2003). The failure to observe a benefit in the larger scale study posed the 
question of clinical relevance of IFN treatment. It remains to be seen, whether the outcome 
might differ if higher doses were given, given earlier in the course of infection, or given in 
combination with other drugs. It is likely that the failure of IFN therapy after an established 
JEV infection can be attributed to the IFN-antagonistic mechanisms of the virus itself. JEV 
counteracts the effect of IFN by blocking tyrosine kinase 2 (Tyk2) and Stat activation (Lin et 
al., 2004). This is mediated by the viral NS5 protein through the activation of protein 
tyrosine phosphatases (Lin et al., 2006). Additionally, JEV NS4A protein is reported to block 
IFN action through inhibiting phosphorylation of Stat 1 and Stat 2 (Lin et al., 2008a). 
Moreover, aside from IFN antagonism at the level of Jak-Stat signalling, JEV is also able to 
inhibit a downstream antiviral molecule, viperin, by promoting its degradation via a 
proteasome-dependent mechanism (Chan et al., 2008).  

2.3 Cellular factors, chemokines and cytokines  

Neutrophil leucocytosis is a unique feature in human cases of JE (Chaturvedi et al., 1979; 

Singh et al., 2000). A neutrophil chemotactic factor derived from JEV-stimulated 

macrophages has been reported to induce neutrophilia (Khanna et al., 1991). Additionally, 

an increased level of the neutrophil chemoattractant, IL-8, found in CSF and serum of JEV 

infected individuals is significantly associated with neutrophilia and an elevated level of IL-

8 in CSF and plasma is linked with adverse clinical outcome (Singh et al., 2000; Winter et al., 

2004). This contrasts with a potentially beneficial role of neutrophils in the control of JEV 

infection by a mechanism involving the degradation of virus via triggering a respiratory 

burst and the generation of toxic radicals (Srivastava et al., 1999). 

Cells of the monocytic lineage and the release of soluble factors thereof have been 

implicated in JEV pathogenesis. Macrophages predominate the inflammatory cells 

infiltrating the brain parenchyma of individuals with Japanese encephalitis (Johnson et al., 

1985). They are permissive for JEV replication, and provide a putative mechanism for JEV 

entry into the CNS (Aleyas et al., 2009; Hasegawa et al., 1990; Mathur et al., 1988; Yang et al., 

2004). Cathepsin L-mediated processing of the capsid protein appears to play a role in JEV 

replication in macrophages, since mutant virus resistant to cleavage by the protease has 

impaired growth in macrophage but not fibroblast or mosquito cell lines (Mori et al., 2007). 

Microglia are a brain-resident macrophage cell population, which can be infected with JEV 

for prolonged periods without morphological alteration, suggesting that microglia might 

serve as a reservoir for viral persistence in the CNS (Thongtan et al., 2010). Local immune 

responses initiated by microglial cells may provide protection against JEV infection of the 

CNS. However, microglial activation resulting in elevated levels of proinflammatory 

cytokines (IL-6, TNF-ǂ, IL-1ǃ) and chemokines (IL-8, RANTES, MCP1) in the CSF and 

plasma may give rise to irreversible neuronal damage and correlates with an increased 

mortality rate (Chen et al., 2004; Chen et al., 2010; Ghoshal et al., 2007; Ravi et al., 1997; Saxena 

et al., 2008; Winter et al., 2004).  
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Astroyctes were originally classified as a subclass of glial cells with pleiotropic functions for 

maintainance of CNS homeostasis, and only recently were they shown to be 

immunocompetent cells (Dong & Benveniste, 2001). JEV infected astrocytes are an important 

source of chemokines (CCL5 and CXCL10) for migration of leukocytes into the CNS 

(Bhowmick et al., 2007; Chen et al., 2010).  

Lastly, natural killer (NK) and Ǆ/ǅ T cells form the cytotoxic arm of the innate immune 

pathways. Both exhibit cellular cytotoxicity by causing apoptotic lysis of virally infected 

cells, either through a direct cell-cell contact mechanism or, indirectly, by release of soluble 

cytokines, IFN-Ǆ and TNF-ǂ. An in vitro study has demonstrated the antiviral activity of 

IFN-Ǆ against JEV (Hasegawa et al., 1990) and we have confirmed a critical role of IFN-Ǆ in 

recovery from JEV infection using IFN-Ǆ-/- mice, which demonstrate significantly increased 

mortality relative to wild-type mice (Larena and Lobigs, unpublished). IFN-Ǆ mediates its 

antiviral effect, at least in part, through induction of nitric oxide (NO) synthase (Karupiah et 

al., 1993) and an inhibitory effect of NO on JEV growth has been documented (Lin et al., 

1997; Saxena et al., 2000). IFN-Ǆ, derived from Ǆ/ǅ T cells is necessary for the early control of 

dissemination of WNV, which is closely related to JEV (Wang et al., 2003a). Ǆ/ǅ T cells may 

play a protective role at the interface of innate and adaptive immunity, since TCRǅ-/- mice 

display higher susceptibility after secondary challenge with WNV compared to wild-type 

mice (Wang et al., 2006). It will be interesting to uncover whether Ǆ/ǅ T cells are also 

important in experimental models of JEV.  

3. Adaptive immunity 

Adaptive immunity represents the second wave of immune responses and is characterized 

by specificity, high potency, and development of memory. For it to become activated, it 

requires signals from antigen presenting cells of the innate immune system. This can be 

directly through cell-to-cell communication or, indirectly, by recognition of soluble 

cytokines. Adaptive immunity is composed of the humoral and cell-mediated immune 

responses mediated by B and T lymphocytes, respectively. The essential contribution of the 

adaptive immune responses in recovery from viral infections has been evident from 

empirical observations in people with defective B cell or T cell development (Fulginiti et al., 

1968; Wilfert et al., 1977; Wyatt, 1973).  

3.1 B cells 

Humoral immunity has paramount protective function in primary JEV infection. The 

importance of a vigorous, virus-specific, humoral immune response in ameliorating and 

preventing illness has been documented in human cases of JE (Burke et al., 1987; Libraty et 

al., 2002; McCallum, 1991) and in animal models by administration of antibody prior or 

subsequent to infection with JEV (Goncalvez et al., 2008; Gupta et al., 2003; Kimura-Kuroda 

& Yasui, 1988; Zhang et al., 1989).  We have shown that mice genetically defective in B cells 

and antibody (ǍMT-/-) develop uncontrolled viremia, viral persistence in peripheral tissues, 

rapid and widespread viral dissemination into the CNS, and early uniform mortality 

(Larena et al., 2011). Additionally, transfer of purified JEV-immune B cell fully protects 

recipient wild-type mice from lethal JEV challenge (Larena et al., 2011).  

The early IgM response against JEV is independent of T cell help (Larena et al., 2011), most 

likely due to the highly ordered and repetitive surface structures of the virion particle 
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(Spohn & Bachmann, 2008). Neutralizing anti-JEV IgM antibodies are most important in 

recovery from primary infection. This is supported by the finding that B cell-deficient mice 

develop detectable virus in both serum and spleen as early as day 4 pi, a time point when 

neutralizing anti-JEV IgM antibody start to appear in wild-type mice. In addition, CD4+ T 

cell-deficient mice (MHCII-/-), which have truncated IgM and blunted IgG antibody 

responses, present with undetectable early viremia, indicating that even suboptimal anti-

JEV IgM antibody levels provided a beneficial effect (Larena et al., 2011).  

Mechanistically, antibodies elicited against flaviviruses exhibit their action directly by 
neutralization of infectivity, or indirectly by antibody-dependent cell-mediated cytotoxicity, 
Fc-Ǆ-receptor-mediated clearance, or complement-mediated cytotoxicity (Pierson et al., 
2008). Neutralizing antibodies predominantly target the E protein of the virion, although 
protective antibodies against prM and NS1 proteins have also been documented 
(Dewasthaly et al., 2001; Kolaskar & Kulkarni-Kale, 1999; Konishi et al., 1991; Konishi et al., 
1992a; Konishi et al., 1992b; Lin et al., 2008b; Lin et al., 1998; Nam et al., 1999; Seif et al., 1995; 
Wu et al., 2003; Wu & Lin, 2001; Xu et al., 2004). The latter can control JEV infection by their 
complement-mediated cytolytic potential (Krishna et al., 2009; Lin et al., 2008b; Lin et al., 
1998). Antibody neutralizes flavivirus infectivity with high efficiency mainly by interfering 
with early steps of the viral entry pathway, including attachment, internalisation, and fusion 
(Butrapet et al., 1998; Crill & Roehrig, 2001; Goncalvez et al., 2008; Nybakken et al., 2005).  

3.2 T cells 

T cells can be classified phentoypically, on the basis of their antigen receptor usage (ǂ/ǃ vs 
Ǆ/ǅ) and their co-receptor expression (CD4 vs. CD8), or functionally (cytotoxic vs helper). 
Generally, cytotoxic T lymphocytes (CTLs) are predominantly of CD8+ and helper T (Th) 
cells of CD4+ phenotype. T cells of the Ǆ/ǅ phenotype recognize non-classical major 
histocompatibility complex (MHC) antigens and form part of the innate immune response 
as described earlier. On the other hand, CD8+ and CD4+ ǂ/ǃ T cells recognize MHC-I and 
MHC-II plus peptide antigen, respectively, and serve as mediators of adaptive immune 
responses.  

3.2.1 CD4+ T cell immune response 

Exposure to JEV induces effective CD4+ T cells immunity, characterised by T cell 
proliferation, production of Th1 and Th2 cytokines, and immunoglobulin class switching 
(Konishi et al., 1995; Ramakrishna et al., 2003). Putative Th epitopes that elicit virus-specific 
and flavivirus cross-reactive proliferative responses in immune splenocytes have been 
mapped in E protein (Kutubuddin et al., 1991). In humans, exposure to live JEV infection or 
vaccination similarly induces JEV-specific and flavivirus cross-reactive CD4+ T cell 
responses (Aihara et al., 1998; Konishi et al., 1995). A region of NS3 protein (residues 193 – 
324) has been identified as the dominant source of peptide determinants for CD4+ T cells in 
a healthy JEV-endemic cohort (Kumar et al., 2004a; Kumar et al., 2004c).  Patients with severe 
encephalitis had impaired NS3-specific CD4+ T cell responses, indicating a critical 
protective role of these immune cells in the pathogenesis of JE (Kumar et al., 2004b). 
Multifaceted CD4+ T cells contribute to controlling infection by various mechanisms, 
including antiviral cytokine production, antibody class switching, direct cytotoxicity, and 
maintenance CD8+ T cell activity (Zhu et al., 2010).  The protective value of JEV-immune 
CD4+ T cells has been explored in adoptive transfer experiments and genetically deficient 
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mice (Biswas et al., 2009; Larena et al., 2011). The lack of CD4+ T cells in MHCII-/- mice 
results in a truncated JEV-specific IgM response and significantly blunted immunolgobulin 
class switching to IgG (Larena et al., 2011). As a consequence, anti-JEV neutralizing activity 
in MHCII-/- mice increases marginally up to day 8 pi and drops significantly thereafter. 
This results in an increased viral burden in the CNS late in the course of infection and 
uniform mortality. Thus, the beneficial effect of JEV-immune CD4+ T cells predominantly 
involves effective antibody production, thereby preventing virus entry into the CNS. 

3.2.2 CD8+ T cell immune response 

Early reports demonstrated JEV-specific CD8+ T cell proliferative responses and cytolytic 
activity in humans and mice after vaccination or exposure to live JEV infection (Konishi et 
al., 1995; Konishi et al., 1997; Konishi et al., 1998; Murali-Krishna et al., 1995a; Murali-Krishna 
et al., 1994; 1995b). Peptide determinants recognized by JEV-immune CD8+ cells are starting 
to be identified: they include a H-2Kd-restricted E protein-derived peptide (CYHASVTDI) 
(Takada et al., 2000) and a H-2Db-restricted NS4B protein-derived peptide (SAVWNSTTA) 
(Larena et al., 2011; Trobaugh et al., 2010). The humans CD8+ T cell response against JEV 
appears to be biased to peptide determinants derived from the NS3 protein (Kumar et al., 
2004c; Kumar et al., 2003), as was first reported for the CTL response against the closely 
related Murray Valley encephalitis virus (MVEV) in mice (Lobigs et al., 1994). This response 
against determinants in NS3 protein is broadly flavivirus cross-reactive and paradoxically 
recognises disparate epitopes from JEV and distantly related flaviviruses, but ignores more 
similar peptides from “self” and other virus families (Regner et al., 2001), suggesting that 
primary sequence homology is not always the crucial factor in peptide recognition in the 
cross-reactive cellular immune responses against flaviviruses. 
Cytotoxic CD8+ T cells exert their function by lysing virally infected cells directly through 

Fas-FasL interaction or the perforin-granzymes exocytosis mechanism, and indirectly by 

release of soluble cytokines, IFN-Ǆ and TNF-ǂ. A dominant  protective role of CD8+ T cells 

was initially reported by Murali-Krishna et al (1996); however, this involved co-injection of a 

large number of splenocytes with virus into the brain and required co-transfer of CD4+ T 

cells. In contrast, we have found only a subsidiary role of CD8+ T cells in recovery from JEV 

infection in a murine model (Larena et al., 2011). Thus, in vivo depletion of CD8+ T cells 

does not significantly increase susceptibility of mice to virus infection and genetic 

deficiencies in cytolytic effector pathways of T lymphocytes does not exacerbate the 

pathogenesis of JEV.  However, CD8+ T cells contribute to a significant level to reducing 

viral load in the CNS of infected Fas-/-, granzymeA/B-/- and CD8+ T cell-depleted mice. 

Thus, although CD8+ T cells apparently do not provide a significant advantage in terms of 

survival following JEV infection, they demonstrate a beneficial role in controlling virus 

growth in the CNS, with the proviso that the latter may occur at the cost of increased 

immunopathology (Larena et al., 2011).  

3.2.3 The contribution of CD8+ T cells to recovery from infection differs between JEV 
and closely related flaviviruses  

Our work and that of others has uncovered a conflicting role of CD8+ T cells in recovery 
from infection with encephalitic flaviviruses. While essential for virus elimination from the 
CNS and survival in mouse models of West Nile encephalitis (Shrestha & Diamond, 2004; 
Shrestha et al., 2006; Wang et al., 2003b; 2004), and a disease-potentiating effect of CTLs was 
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documented in mice infected with MVEV (Licon Luna et al., 2002), the CD8+ T cell response 
does not markedly affect outcome of infection with JEV (Larena et al., 2011). Notably, mice 
genetically deficient in the Fas- or perforin-dependent pathways of cytotoxicity show 
greatly increased susceptibility to virulent lineage I WNV infection (Shrestha & Diamond, 
2007), but do not differ from wild-type mice in susceptibility to infection with JEV (Larena et 
al., 2011) or lineage II WNV strain, Sarafend (Wang et al., 2004), and are more resistant to 
infection with MVEV (Licon Luna et al., 2002). These findings highlight a difference in 
pathogenesis between even closely related flaviviruses belonging to the JEV serocomplex 
(Mullbacher et al., 2004) that most likely involves a difference in the capacity of the cellular 
immune response to resolve the virus infections in the CNS. 

3.2.4 Modulation of MHC-I 

MHC-I is expressed on virtually all mammalian cells and the cell surface expression of this 
class of restriction elements for CTLs is up-regulated as a consequence of infection with JEV 
and other flaviviruses in a diverse range of cell types from different species (Kesson et al., 
2002; Lobigs et al., 2003). Flavivirus-induced up-regulation of MHC-I cell surface expression 
is, at least in part, IFN-independent (Abraham et al., 2010; Kesson & King, 2001; Mullbacher 
& Lobigs, 1995), and also includes that of non-classical MHC-I (Abraham et al., 2008). 
Although the physiological relevance of this phenomenon in virus transmission remains 
unclear, it has been proposed that the process may contribute to reduced NK cell activity, 
which is inhibited by engagement with MHC-I by NK cell inhibitory receptors (Hershkovitz 
et al., 2008; Momburg et al., 2001). It has also been hypothesised that flavivirus-induced up-
regulation of MHC-I leads to transient T cell autoimmunity (given the increase in “self” 
antigen presentation), followed by subsequent suppression of “self”-reactive T cell activity, 
and that flavivirus infection or live vaccination of humans in the tropics could contribute to 
the observed lower incidence of overt autoimmunity in the tropics than in temperate 
climates, where flaviviruses are not endemic (Lobigs et al., 1996). 

4. Implications for vaccination against JE 

Current vaccines against JE include non-adjuvanted and alum-adjuvanted inactivated 
vaccines that are licensed internationally, and an attenuated live vaccine predominantly 
used in China (Beasley et al., 2008; Halstead & Thomas, 2011). There is a clear need for 
development and licensing of new JE vaccines, which raises the question of immunological 
correlates for protection against JEV infection that should be targeted by an effective JE 
vaccine. Our understanding of immune pathways essential for recovery from primary JEV 
infection emphasises the critical role of neutralising antibody against E protein and the 
requirement for effective B and CD4+ T cell immune responses, while suggesting a 
subsidiary contribution of CD8+ T cells to recovery. TLR signalling and type I IFN are also 
expected to play an important role in induction of effective B cell immunity (Hou et al., 2011; 
Kasturi et al., 2011; Le Bon et al., 2001). Similar to recovery from primary JEV infection, 
neutralising antibody against E protein is also key to vaccine-induced protective immunity, 
with no or only partial protection provided by JEV-immune CD8+ T cell memory (Chen et 
al., 1999; Konishi et al., 2003; Pan et al., 2001). This evidence highlights that induction of 
potent and durable memory B cells that produce high-affinity, neutralising antibody against 
E protein is the prime criterion for efficacy of a vaccine against JEV, in addition to safety and 
tolerability. 
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Factor Outcome after JEV infection 

Age ↑ disease severity in younger animals 
Route of Infection intracranial and intranasal = high mortality 

extraneural =  ↓ disease severity 
Mouse strain background impacts on disease outcome 
Innate Immunity 
 Pathogen Recognition  
           Myd88 absence = ↓ production of inflammatory cytokines,  

                  no effect on disease severity 
 RIG-1 absence = ↓ production of type 1 IFN;  ↑ disease severity 
 MDA-5 absence = no effect on production of type 1 IFN;  

                  no effect on disease severity 
 LGP2 absence = ↑ production of type 1 IFN 
 Interferon Induction and Signalling 
 NF-κB ↑ PI3K dependent production of type 1 IFN 
 IRF-3 ↑ RIG-1 dependent production of type 1 IFN 
 IFN-α inhibits virus, no effect with treatment of human cases 

 IFN-α receptor  absence = ↑ disease severity 
 Jak-stat inhibited by viral NS4A and NS5 proteins 
 ISG15 inhibits virus 
 Viperin inhibited via proteosome-dependent mechanism 
 Cellular Factors 
 Neutrophils neutrophilia, intracellular degradation of JEV  

↑ release of inflammatory cytokines; ↑ pathology 
 Macrophage monocytosis; ↑ migration of monocytes to CNS;  

↑ inflammatory cytokines 
 Microglial Cells microgliosis; ↑ release of inflammatory cytokines; ↑ 

pathology 
 Astrocytes ↑ release of inflammatory cytokines 
 Other cytokines and chemokines 
 IFN-γ absence = ↑ disease severity 
 CCR5 absence = ↑ disease severity 
Adaptive Immunity 
 Effector cells 
 B cells absence = ↑ disease severity 
 CD4+ T cells absence = ↑ disease severity 
 CD8+ Tcells absence = ↑ CNS viral burden without impact on mortality 

rate 
 Cytolytic Pathways 
 Perforin absence = no effect on disease severity 
 Granzymes A/B absence = no effect on disease severity 
 Fas absence = no effect on disease severity 
   

(↑) increased, (↓) decreased 

Table 1. Factors affecting outcome of JEV infection 
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