348 research outputs found

    Cultural diplomacy: building an international cooperation network

    Get PDF
    The article is devoted to problems in the field of communication between the states. It investigates the role of language in modern society, its impact on understanding and the image of the country as a whole. The author analyzes the perception of the language by the recipients and adaptation of the acquired skills through the language. Learning and understanding the language is quite important for the best work in the field of trade, culture, and the exchange of experience. The concept of "cultural diplomacy" and its role between the participating countries in the international arena are considered. The author explains the concept of "soft power", its specific role in the field of close cooperation and the creation of an international network of collaboration. Cultural diplomacy may seem more indefinite than other traditional diplomatic practices related to the economic-commercial or political sector, exists clearly and has also been in practice for years, at least bilaterally. Cultural diplomacy is operated by the European Union, with the promotion of cultural diversity. The underlying logic is to place cultural cooperation at the center of the Union's diplomatic relations with third partner countries. From a broader perspective, this strategy also contributes to the foreign policy priority of making the EU a stronger global player on the world stage

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios

    On the plasma deposition of vancomycin-containing nano-capsules for drug-delivery applications

    Get PDF
    Aerosol-assisted atmospheric pressure plasma allows for a one-step synthesis of vancomycin-containing nano-capsules. Morphological and chemical analyses are carried out to estimate how different discharge parameters affect the plasma deposition process. Nano-capsules size and abundance largely depend on the shell precursor content in the gas feed and on the drug concentration in the aerosol solution. Based on these results a deposition mechanism is proposed, where, interestingly, the key step is the formation of the nano-capsules in the plasma phase. Furthermore, the related antibacterial activity is proved against Staphylococcus aureus. Preliminary release tests indicate the possible exploitation of the plasma-deposited vancomycin-containing nano-capsules in the drug delivery field, and systems based on other bioactive molecules can be expected.Peer ReviewedPostprint (published version

    A case of disseminated BCG infection in a daughter of Italian immigrants in Switzerland

    Get PDF
    Bacillus Calmette-Guerin (BCG) is a vaccine against tuberculosis and contains a live, attenuated strain of Mycobacterium bovis as its essential constituent. Being a live, attenuated strain with potential pathogenicity, BCG can cause different complications, both near the inoculation site and through blood dissemination, especially in patients with immunodeficiency. IFN-gamma R1 deficiency is an autosomal recessively inherited immunodeficiency characterized by predisposition to infections with intracellular pathogens, in particular mycobacteria. We report a rare case of chronic osteomyelitis lasting 30 years due to BCG in a woman with IFN-gamma R1 deficiency who had previous clinical history of multi-organ BCGitis. Diagnosis of chronic osteomyelitis was confirmed by an 18-fluorine fluorodeoxyglucose positron emission tomography combined with CT scan (18F-FDG PET/CT). In children with a history of BCG vaccination and chronic unexplained infections, a clinical suspicion of BCG-related disease must arise, and a reason of immunodeficiency should be sought

    Photocatalytic TiO2-Based Nanostructured Materials for Microbial Inactivation

    Get PDF
    Pathogenic microorganisms can spread throughout the world population, as the currentCOVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogensand other microorganisms can come from the use of photoactive materials as antimicrobial agents ableto hinder, or at least limit, their spreading by means of photocatalytically assisted processes activatedby light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can killmicroorganisms in different matrices such as water or different surfaces without affecting humanhealth. In this review, we focus the attention on TiO2nanoparticle-based antimicrobial materials,intending to provide an overview of the most promising synthetic techniques, toward possiblelarge-scale production, critically review the capability of such materials to promote pathogen (i.e.,bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications

    Plasma technology increases the efficacy of prothioconazole against fusarium graminearum and fusarium proliferatum contamination of maize (Zea mays) seedlings

    Get PDF
    The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Further-more, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings

    Nitrogen fertilization and arbuscular mycorrhizal fungi do not mitigate the adverse effects of soil contamination with polypropylene microfibers on maize growth

    Get PDF
    Soil contamination with microplastics may adversely affect soil properties and functions and consequently crop productivity. In this study, we wanted to verify whether the adverse effects of microplastics in the soil on maize plants (Zea mays L.) are due to a reduction in nitrogen (N) availability and a reduced capacity to establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi. To do this, we performed a pot experiment in which a clayey soil was exposed to two environmentally relevant concentrations of polypropylene (PP; one of the most used plastic materials) microfibers (0.4% and 0.8% w/w) with or without the addition of N fertilizer and with or without inoculation with AM fungi. The experiment began after the soil had been incubated at 23 Â°C for 5 months. Soil contamination with PP considerably reduced maize root and shoot biomass, leaf area, N uptake, and N content in tissue. The adverse effects increased with the concentration of PP in the soil. Adding N to the soil did not alleviate the detrimental effects of PP on plant growth, which suggests that other factors besides N availability played a major role. Similarly, although the presence of PP did not inhibit root colonization by AM fungi (no differences were observed for this trait between the uncontaminated and PP-contaminated soils), the addition of the fungal inoculum to the soil failed to mitigate the negative impact of PP on maize growth. Quite the opposite: mycorrhization further reduced maize root biomass accumulation. Undoubtedly, much research remains to be done to shed light on the mechanisms involved in determining plant behavior in microplastic-contaminated soils, which are most likely complex. This research is a priority given the magnitude of this contamination and its potential implications for human and environmental health

    Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean

    Get PDF
    The effect of two novel technologies, also in combination, on germination and growth of soybeans has been investigated. On one side, ultrasound treatment of the seeds increased water uptake without altering the morphology and the wettability of the seed coat, but also induced slight chemical modifications of the outer part of the seed. Plasma-activated water (PAW), obtained from treating water with non-thermal atmospheric-pressure plasma in air, increased the rate of germination and subsequent plant growth. Different combinations of these two technologies were tested in order to study their interaction and to identify an optimum treatment process. Industrial relevance A great urgency in crop management is to enhance sustainability. The aim is to achieve a cheap and eco-friendly production process reducing the wide current use of energy, irrigation water, chemicals and pesticides. Soybeans is a legume whose worldwide production is increasing in the last years therefore a higher efficiency and sustainability in its cultivation is obviously very appealing. Cold plasma and Ultrasound technologies are well-known in the industrial scenario and their applications in crop production are recently drawing attention; the potential of combining these two powerful techniques is clearly very promising
    • …
    corecore