4,899 research outputs found

    Catalytic mechanism and role of hydroxyl residues in the active site of theta class Glutathione-S-Transferases: Investigation of Ser-9 and Tyr-113 in a Glutathione S-Transferase from the australian sheep blowfly Lucilia cuprina

    Get PDF
    Abstract Spectroscopic and kinetic studies have been performed on the Australian sheep blowfly Lucilia cuprina glutathione S-transferase (Lucilia GST; EC 2.5.1.18) to clarify its catalytic mechanism. Steady state kinetics of Lucilia GST are non-Michaelian, but the quite hyperbolic isothermic binding of GSH suggests that a steady state random sequential Bi Bi mechanism is consistent with the anomalous kinetics observed. The rate-limiting step of the reaction is a viscosity-dependent physical event, and stopped-flow experiments indicate that product release is rate-limiting. Spectroscopic and kinetic data demonstrate thatLucilia GST is able to lower the pK a of the bound GSH from 9.0 to about 6.5. Based on crystallographic suggestions, the role of two hydroxyl residues, Ser-9 and Tyr-113, has been investigated. Removal of the hydroxyl group of Ser-9 by site-directed mutagenesis raises the pK a of bound GSH to about 7.6, and a very low turnover number (about 0.5% of that of wild type) is observed. This inactivation may be explained by a strong contribution of the Ser-9 hydroxyl group to the productive binding of GSH and by an involvement in the stabilization of the ionized GSH. This serine residue is highly conserved in the Theta class GSTs, so the present findings may be applicable to all of the family members. Tyr-113 appears not to be essential for the GSH activation. Stopped-flow data indicate that removal of the hydroxyl group of Tyr-113 does not change the rate-limiting step of reaction but causes an increase of the rate constants of both the formation and release of the GSH conjugate. Tyr-113 resides on α-helix 4, and its hydroxyl group hydrogen bonds directly to the hydroxyl of Tyr-105. This would reduce the flexibility of a protein region that contributes to the electrophilic substrate binding site; segmental motion of α-helix 4 possibly modulates different aspects of the catalytic mechanism of theLucilia GST

    A 21-Year-Old Pregnant Woman with Hypertension and Proteinuria

    Get PDF
    Ronald Ma and colleagues describe the differential diagnosis, investigation, and management of a 21-year-old pregnant woman presenting with hypertension and proteinuria at 20 weeks of gestation

    Atlanto-axial rotatory fixation in a girl with Spondylocarpotarsal synostosis syndrome

    Get PDF
    We report a 15-year-old girl who presented with spinal malsegmentation, associated with other skeletal anomalies. The spinal malsegmentation was subsequently discovered to be part of the spondylocarpotarsal synostosis syndrome. In addition, a distinctive craniocervical malformation was identified, which included atlanto-axial rotatory fixation. The clinical and the radiographic findings are described, and we emphasise the importance of computerised tomography to characterize the craniocervical malformation complex. To the best of our knowledge, this is the first clinical report of a child with spondylocarpotarsal synostosis associated with atlanto-axial rotatory fixation

    CowN Sustains Nitrogenase Turnover in the Presence of the Inhibitor Carbon Monoxide

    Get PDF
    Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN restores nearly full nitrogenase activity. Our results further indicate that CowN’s protection mechanism involves decreasing the binding affinity of CO to nitrogenase’s active site approximately tenfold without interrupting substrate turnover. Taken together, our work suggests CowN is an important auxiliary protein in nitrogen fixation that engenders CO tolerance to nitrogenase

    How certain are we about the model-based estimations of global irrigation water withdrawal?

    Get PDF
    Irrigation agriculture is the most important user of the global freshwater resources worldwide, which makes it one of the key actors conditioning sustainable development and water security. The anticipated future climate change, population growth, and rapidly rising global demand for food will likely lead to agricultural expansion by allowing the development of irrigated areas. This together with the fact that irrigated crops are approximately four times more profitable than rainfed crops will place much additional pressure on water resources in the next years. Therefore, it is of vital importance to devise solutions that minimize the negative impacts of agricultural expansion, particularly on biodiversity and water use, so as to help us achieve environmental and economic sustainability. To realize such an ambition, quantifying irrigation water withdrawal at different spatio-temporal scales is essential. Global Hydrological Models (GHM) are often used to produce irrigation water withdrawal estimates. Yet GHMs questionably rely on several uncertain estimates of irrigated areas, crop evapotranspiration processes, precipitation and irrigation efficiency, which are the four main inputs in the structure of GHMs. Here we show that, once basic uncertainties regarding these estimates are properly integrated into the calculations, the point-based irrigation water withdrawal estimates actually correspond to uncertainty intervals that span several orders of magnitude already at the grid cell level. Our approach is based on the concept of sensitivity auditing, a practice of process-oriented skepticism towards mathematical models. The numerical results suggest that current estimates of global irrigation water withdrawals are spuriously accurate due to their neglect of several ambiguities/uncertainties, and thus need to be re-assessed. Our analysis highlights that models of global irrigation water demands need to better integrate uncertainties, both technical and epistemological, so as to avoid misguiding the development of strategies intended to help ensure water and food security

    SFRS7-Mediated Splicing of Tau Exon 10 Is Directly Regulated by STOX1A in Glial Cells

    Get PDF
    Background: In this study, we performed a genome-wide search for effector genes bound by STOX1A, a winged helix transcription factor recently demonstrated to be involved in late onset Alzheimer’s disease and affecting the amyloid processing pathway. Methodology/Principal Findings: Our results show that out of 218 genes bound by STOX1A as identified by chromatinimmunoprecipitation followed by sequencing (ChIP-Seq), the serine/arginine-rich splicing factor 7 (SFRS7) was found to be induced, both at the mRNA and protein levels, by STOX1A after stable transfection in glial cells. The increase in SFRS7 was followed by an increase in the 4R/3R ratios of the microtubule-associated protein tau (MAPT) by differential exon 10 splicing. Secondly, STOX1A also induced expression of total tau both at the mRNA and protein levels. Upregulation of total tau expression (SFRS7-independent) and tau exon 10 splicing (SFRS7-dependent), as shown in this study to be both affected by STOX1A, is known to have implications in neurodegeneration

    Association of HIV viral load with monocyte chemoattractant protein-1 and atherosclerosis burden measured by magnetic resonance imaging

    Get PDF
    BACKGROUND: HIV-infected individuals may be at increased risk for atherosclerosis. Although this is partially attributable to metabolic factors, HIV-associated inflammation may play a role. OBJECTIVE: To investigate associations of HIV disease with serum monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) levels and atherosclerosis burden. DESIGN: A cross-sectional analysis. METHODS: : Serum MCP-1/CCL2, fasting lipids, and glucose tolerance were measured in 98 HIV-infected and 79 demographically similar uninfected adults. Eighty-four participants had MRI of the carotid arteries and thoracic aorta to measure atherosclerosis burden. Multivariate analyses were performed using linear regression. RESULTS: Mean MCP-1/CCL2 levels did not differ between HIV-infected and uninfected participants (P = 0.65). Among HIV-infected participants, after adjusting for age, BMI, and cigarette smoking, HIV-1 viral load was positively associated with MCP-1/CCL2 (P = 0.02). Multivariate analyses adjusting for sex, low-density lipoprotein cholesterol, total cholesterol:high-density lipoprotein cholesterol ratio, cigarette smoking, MCP-1/CCL2, and protease inhibitor use found that HIV infection was associated with greater mean thoracic aorta vessel wall area (VWA, P < 0.01) and vessel wall thickness (VWT, P = 0.03), but not with carotid artery parameters. Compared with being uninfected, having detectable HIV-1 viremia was associated with greater mean thoracic aorta VWA (P < 0.01) and VWT (P = 0.03), whereas being HIV-infected with undetectable viral load was associated with greater thoracic aorta VWA (P = 0.02) but not VWT (P = 0.15). There was an independent positive association of MCP-1/CCL2 with thoracic aorta VWA (P = 0.01) and VWT (P = 0.01). CONCLUSION: HIV-1 viral burden is associated with higher serum levels of MCP-1/CCL2 and with atherosclerosis burden, as assessed by thoracic aorta VWA and VWT

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore