129 research outputs found
Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection
BACKGROUND Clostridium difficile is the most common cause of infectious diarrhea in hospitalized patients. Recurrences are common after antibiotic therapy. Actoxumab and bezlotoxumab are human monoclonal antibodies against C. difficile toxins A and B, respectively. METHODS We conducted two double-blind, randomized, placebo-controlled, phase 3 trials, MODIFY I and MODIFY II, involving 2655 adults receiving oral standard-of-care antibiotics for primary or recurrent C. difficile infection. Participants received an infusion of bezlotoxumab (10 mg per kilogram of body weight), actoxumab plus bezlotoxumab (10 mg per kilogram each), or placebo; actoxumab alone (10 mg per kilogram) was given in MODIFY I but discontinued after a planned interim analysis. The primary end point was recurrent infection (new episode after initial clinical cure) within 12 weeks after infusion in the modified intention-to-treat population. RESULTS In both trials, the rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, −10.1 percentage points; 95% confidence interval [CI], −15.9 to −4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, −9.9 percentage points; 95% CI, −15.5 to −4.3; P<0.001) and was significantly lower with actoxumab plus bezlotoxumab than with placebo (MODIFY I: 16% [61 of 383] vs. 28% [109 of 395]; adjusted difference, −11.6 percentage points; 95% CI, −17.4 to −5.9; P<0.001; MODIFY II: 15% [58 of 390] vs. 26% [97 of 378]; adjusted difference, −10.7 percentage points; 95% CI, −16.4 to −5.1; P<0.001). In prespecified subgroup analyses (combined data set), rates of recurrent infection were lower in both groups that received bezlotoxumab than in the placebo group in subpopulations at high risk for recurrent infection or for an adverse outcome. The rates of initial clinical cure were 80% with bezlotoxumab alone, 73% with actoxumab plus bezlotoxumab, and 80% with placebo; the rates of sustained cure (initial clinical cure without recurrent infection in 12 weeks) were 64%, 58%, and 54%, respectively. The rates of adverse events were similar among these groups; the most common events were diarrhea and nausea. CONCLUSIONS Among participants receiving antibiotic treatment for primary or recurrent C. difficile infection, bezlotoxumab was associated with a substantially lower rate of recurrent infection than placebo and had a safety profile similar to that of placebo. The addition of actoxumab did not improve efficacy. (Funded by Merck; MODIFY I and MODIFY II ClinicalTrials.gov numbers, NCT01241552 and NCT01513239.
Harnessing learning biases is essential for applying social learning in conservation
Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1
A retrospective propensity-score-matched cohort study of the impact of procalcitonin testing on antibiotic use in hospitalized patients during the first wave of COVID-19
\ua9 The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.BACKGROUND: Procalcitonin (PCT) is a blood marker used to help diagnose bacterial infections and guide antibiotic treatment. PCT testing was widely used/adopted during the COVID-19 pandemic in the UK. OBJECTIVES: Primary: to measure the difference in length of early (during first 7 days) antibiotic prescribing between patients with COVID-19 who did/did not have baseline PCT testing during the first wave of the pandemic. Secondary: to measure differences in length of hospital/ICU stay, mortality, total days of antibiotic prescribing and resistant bacterial infections between these groups. METHODS: Multi-centre, retrospective, observational, cohort study using patient-level clinical data from acute hospital Trusts/Health Boards in England/Wales. Inclusion: patients ≥16 years, admitted to participating Trusts/Health Boards and with a confirmed positive COVID-19 test between 1 February 2020 and 30 June 2020. RESULTS: Data from 5960 patients were analysed: 1548 (26.0%) had a baseline PCT test and 4412 (74.0%) did not. Using propensity-score matching, baseline PCT testing was associated with an average reduction in early antibiotic prescribing of 0.43 days [95% confidence interval (CI): 0.22-0.64 days, P < 0.001) and of 0.72 days (95% CI: 0.06-1.38 days, P = 0.03] in total antibiotic prescribing. Baseline PCT testing was not associated with increased mortality or hospital/ICU length of stay or with the rate of antimicrobial-resistant secondary bacterial infections. CONCLUSIONS: Baseline PCT testing appears to have been an effective antimicrobial stewardship tool early in the pandemic: it reduced antibiotic prescribing without evidence of harm. Our study highlights the need for embedded, rapid evaluations of infection diagnostics in the National Health Service so that even in challenging circumstances, introduction into clinical practice is supported by evidence for clinical utility. STUDY REGISTRATION NUMBER: ISRCTN66682918
The cost-effectiveness of procalcitonin for guiding antibiotic prescribing in individuals hospitalized with COVID-19: part of the PEACH study
\ua9 The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.Background: Many hospitals introduced procalcitonin (PCT) testing to help diagnose bacterial coinfection in individuals with COVID-19, and guide antibiotic decision-making during the COVID-19 pandemic in the UK. Objectives: Evaluating cost-effectiveness of using PCT to guide antibiotic decisions in individuals hospitalized with COVID-19, as part of a wider research programme. Methods: Retrospective individual-level data on patients hospitalized with COVID-19 were collected from 11 NHS acute hospital Trusts and Health Boards from England and Wales, which varied in their use of baseline PCT testing during the first COVID-19 pandemic wave. A matched analysis (part of a wider analysis reported elsewhere) created groups of patients whose PCT was/was not tested at baseline. A model was created with combined decision tree/Markov phases, parameterized with quality-of-life/unit cost estimates from the literature, and used to estimate costs and quality-adjusted life years (QALYs). Cost-effectiveness was judged at a \ua320000/QALY threshold. Uncertainty was characterized using bootstrapping. Results: People who had baseline PCT testing had shorter general ward/ICU stays and spent less time on antibiotics, though with overlap between the groups’ 95% CIs. Those with baseline PCT testing accrued more QALYs (8.76 versus 8.62) and lower costs (\ua39830 versus \ua310 700). The point estimate was baseline PCT testing being dominant over no baseline testing, though with uncertainty: the probability of cost-effectiveness was 0.579 with a 1 year horizon and 0.872 with a lifetime horizon. Conclusions: Using PCT to guide antibiotic therapy in individuals hospitalized with COVID-19 is more likely to be cost-effective than not, albeit with uncertainty
Developing a mode for decision-making around antibiotic prescribing for patients with COVID-19 pneumonia in acute NHS hospitals during the first wave of the COVID-19 pandemic: Qualitative results from the PEACH study
Persistence of immune responses after heterologous and homologous third COVID-19 vaccine dose schedules in the UK: eight-month analyses of the COV-BOOST trial
Background: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose in June 2021. Monovalent messenger RNA (mRNA) COVID-19 vaccines were subsequently widely used for the third and fourth-dose vaccination campaigns in high-income countries. Real-world vaccine effectiveness against symptomatic infections following third doses declined during the Omicron wave. This report compares the immunogenicity and kinetics of responses to third doses of vaccines from day (D) 28 to D242 following third doses in seven study arms. Methods: The trial initially included ten experimental vaccine arms (seven full-dose, three half-dose) delivered at three groups of six sites. Participants in each site group were randomised to three or four experimental vaccines, or MenACWY control. The trial was stratified such that half of participants had previously received two primary doses of ChAdOx1 nCov-19 (Oxford–AstraZeneca; hereafter referred to as ChAd) and half had received two doses of BNT162b2 (Pfizer–BioNtech, hereafter referred to as BNT). The D242 follow-up was done in seven arms (five full-dose, two half-dose). The BNT vaccine was used as the reference as it was the most commonly deployed third-dose vaccine in clinical practice in high-income countries. The primary analysis was conducted using all randomised and baseline seronegative participants who were SARS-CoV-2 naïve during the study and who had not received a further COVID-19 vaccine for any reason since third dose randomisation. Results: Among the 817 participants included in this report, the median age was 72 years (IQR: 55–78) with 50.7% being female. The decay rates of anti-spike IgG between vaccines are different among both populations who received initial doses of ChAd/ChAd and BNT/BNT. In the population that previously received ChAd/ChAd, mRNA vaccines had the highest titre at D242 following their vaccine dose although Ad26. COV2. S (Janssen; hereafter referred to as Ad26) showed slower decay. For people who received BNT/BNT as their initial doses, a slower decay was also seen in the Ad26 and ChAd arms. The anti-spike IgG became significantly higher in the Ad26 arm compared to the BNT arm as early as 3 months following vaccination. Similar decay rates were seen between BNT and half-BNT; the geometric mean ratios ranged from 0.76 to 0.94 at different time points. The difference in decay rates between vaccines was similar for wild-type live virus-neutralising antibodies and that seen for anti-spike IgG. For cellular responses, the persistence was similar between study arms. Conclusions: Heterologous third doses with viral vector vaccines following two doses of mRNA achieve more durable humoral responses compared with three doses of mRNA vaccines. Lower doses of mRNA vaccines could be considered for future booster campaigns
On the Effect of Nb on the Microstructure and Properties of Next Generation Polycrystalline Powder Metallurgy Ni-Based Superalloys
Abstract
The effect of Nb on the properties and microstructure of two novel powder metallurgy (P/M) Ni-based superalloys was evaluated, and the results critically compared with the Rolls-Royce alloy RR1000. The Nb-containing alloy was found to exhibit improved tensile and creep properties as well as superior oxidation resistance compared with both RR1000 and the Nb-free variant tested. The beneficial effect of Nb on the tensile and creep properties was due to the microstructures obtained following the post-solution heat treatments, which led to a higher γ′ volume fraction and a finer tertiary γ′ distribution. In addition, an increase in the anti-phase-boundary energy of the γ′ phase is also expected with the addition of Nb, further contributing to the strength of the material. However, these modifications in the γ′ distribution detrimentally affect the dwell fatigue crack-growth behavior of the material, although this behavior can be improved through modified heat treatments. The oxidation resistance of the Nb-containing alloy was also enhanced as Nb is believed to accelerate the formation of a defect-free Cr2O3 scale. Overall, both developmental alloys, with and without the addition of Nb, were found to exhibit superior properties than RR1000.This work was supported by the Rolls-Royce/EPSRC Strategic Partnership under EP/H022309/1, EP/H500375/1 and EP/ M005607/1
Procalcitonin to guide antibiotic use during the first wave of COVID-19 in English and Welsh hospitals: integration and triangulation of findings from quantitative and qualitative sources
\ua9 Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY. Published by BMJ Group.Aim To integrate the quantitative and qualitative data collected as part of the PEACH (Procalcitonin: Evaluation of Antibiotic use in COVID-19 Hospitalised patients) study, which evaluated whether procalcitonin (PCT) testing should be used to guide antibiotic prescribing and safely reduce antibiotic use among patients admitted to acute UK National Health Service (NHS) hospitals. Design Triangulation to integrate quantitative and qualitative data. Setting and participants Four data sources in 148 NHS hospitals in England and Wales including data from 6089 patients. Method A triangulation protocol was used to integrate three quantitative data sources (survey, organisation-level data and patient-level data: data sources 1, 2 and 3) and one qualitative data source (clinician interviews: data source 4) collected as part of the PEACH study. Analysis of data sources initially took place independently, and then, key findings for each data source were added to a matrix. A series of interactive discussion meetings took place with quantitative, qualitative and clinical researchers, together with patient and public involvement (PPI) representatives, to group the key findings and produce seven statements relating to the study objectives. Each statement and the key findings related to that statement were considered alongside an assessment of whether there was agreement, partial agreement, dissonance or silence across all four data sources (convergence coding). The matrix was then interpreted to produce a narrative for each statement. Objective To explore whether PCT testing safely reduced antibiotic use during the first wave of the COVID-19 pandemic. Results Seven statements were produced relating to the PEACH study objective. There was agreement across all four data sources for our first key statement, € During the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing reduced antibiotic prescribing\u27. The second statement was related to this key statement, € During the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing safely reduced antibiotic prescribing\u27. Partial agreement was found between data sources 3 (quantitative patient-level data) and 4 (qualitative clinician interviews). There were no data regarding safety from data sources 1 or 2 (quantitative survey and organisational-level data) to contribute to this statement. For statements three and four, € PCT was not used as a central factor influencing antibiotic prescribing\u27, and € PCT testing reduced antibiotic prescribing in the emergency department (ED)/acute medical unit (AMU),\u27 there was agreement between data source 2 (organisational-level data) and data source 4 (interviews with clinicians). The remaining two data sources (survey and patient-level data) contributed no data on this statement. For statement five, € PCT testing reduced antibiotic prescribing in the intensive care unit (ICU)\u27, there was disagreement between data sources 2 and 3 (organisational-level data and patient-level data) and data source 4 (clinician interviews). Data source 1 (survey) did not provide data on this statement. We therefore assigned dissonance to this statement. For statement six, € There were many barriers to implementing PCT testing during the first wave of COVID-19\u27, there was partial agreement between data source 1 (survey) and data source 4 (clinician interviews) and no data provided by the two remaining data sources (organisational-level data and patient-level data). For statement seven, € Local PCT guidelines/protocols were perceived to be valuable\u27, only data source 4 (clinician interviews) provided data. The clinicians expressed that guidelines were valuable, but as there was no data from the other three data sources, we assigned silence to this statement. Conclusion There was agreement between all four data sources on our key finding € during the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing reduced antibiotic prescribing\u27. Data, methodological and investigator triangulation, and a transparent triangulation protocol give validity to this finding
Procalcitonin to guide antibiotic use during the first wave of COVID-19 in English and Welsh hospitals: integration and triangulation of findings from quantitative and qualitative sources
Aim
To integrate the quantitative and qualitative data collected as part of the PEACH (Procalcitonin: Evaluation of Antibiotic use in COVID-19 Hospitalised patients) study, which evaluated whether procalcitonin (PCT) testing should be used to guide antibiotic prescribing and safely reduce antibiotic use among patients admitted to acute UK National Health Service (NHS) hospitals.
Design
Triangulation to integrate quantitative and qualitative data.
Setting and participants
Four data sources in 148 NHS hospitals in England and Wales including data from 6089 patients.
Method
A triangulation protocol was used to integrate three quantitative data sources (survey, organisation-level data and patient-level data: data sources 1, 2 and 3) and one qualitative data source (clinician interviews: data source 4) collected as part of the PEACH study. Analysis of data sources initially took place independently, and then, key findings for each data source were added to a matrix. A series of interactive discussion meetings took place with quantitative, qualitative and clinical researchers, together with patient and public involvement (PPI) representatives, to group the key findings and produce seven statements relating to the study objectives. Each statement and the key findings related to that statement were considered alongside an assessment of whether there was agreement, partial agreement, dissonance or silence across all four data sources (convergence coding). The matrix was then interpreted to produce a narrative for each statement.
Objective
To explore whether PCT testing safely reduced antibiotic use during the first wave of the COVID-19 pandemic.
Results
Seven statements were produced relating to the PEACH study objective. There was agreement across all four data sources for our first key statement, ‘During the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing reduced antibiotic prescribing’. The second statement was related to this key statement, ‘During the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing safely reduced antibiotic prescribing’. Partial agreement was found between data sources 3 (quantitative patient-level data) and 4 (qualitative clinician interviews). There were no data regarding safety from data sources 1 or 2 (quantitative survey and organisational-level data) to contribute to this statement. For statements three and four, ‘PCT was not used as a central factor influencing antibiotic prescribing’, and ‘PCT testing reduced antibiotic prescribing in the emergency department (ED)/acute medical unit (AMU),’ there was agreement between data source 2 (organisational-level data) and data source 4 (interviews with clinicians). The remaining two data sources (survey and patient-level data) contributed no data on this statement. For statement five, ‘PCT testing reduced antibiotic prescribing in the intensive care unit (ICU)’, there was disagreement between data sources 2 and 3 (organisational-level data and patient-level data) and data source 4 (clinician interviews). Data source 1 (survey) did not provide data on this statement. We therefore assigned dissonance to this statement. For statement six, ‘There were many barriers to implementing PCT testing during the first wave of COVID-19’, there was partial agreement between data source 1 (survey) and data source 4 (clinician interviews) and no data provided by the two remaining data sources (organisational-level data and patient-level data). For statement seven, ‘Local PCT guidelines/protocols were perceived to be valuable’, only data source 4 (clinician interviews) provided data. The clinicians expressed that guidelines were valuable, but as there was no data from the other three data sources, we assigned silence to this statement.
Conclusion
There was agreement between all four data sources on our key finding ‘during the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing reduced antibiotic prescribing’. Data, methodological and investigator triangulation, and a transparent triangulation protocol give validity to this finding
Antibiotic Review Kit for Hospitals (ARK-Hospital):study protocol for a stepped wedge cluster randomized controlled trial
Background: To ensure patients continue to get early access to antibiotics at admission, while also safely reducing antibiotic use in hospitals, one needs to target the continued need for antibiotics as more diagnostic information becomes available. UK Department of Health guidance promotes an initiative called 'Start Smart then Focus': early effective antibiotics followed by active 'review and revision' 24-72 h later. However in 2017, < 10% of antibiotic prescriptions were discontinued at review, despite studies suggesting that 20-30% of prescriptions could be stopped safely. Methods/design: Antibiotic Review Kit for Hospitals (ARK-Hospital) is a complex 'review and revise' behavioural intervention targeting healthcare professionals involved in antibiotic prescribing or administration in inpatients admitted to acute/general medicine (the largest consumers of non-prophylactic antibiotics in hospitals). The primary study objective is to evaluate whether ARK-Hospital can safely reduce the total antibiotic burden in acute/general medical inpatients by at least 15%. The primary hypotheses are therefore that the introduction of the behavioural intervention will be non-inferior in terms of 30-day mortality post-admission (relative margin 5%) for an acute/general medical inpatient, and superior in terms of defined daily doses of antibiotics per acute/general medical admission (co-primary outcomes). The unit of observation is a hospital organisation, a single hospital or group of hospitals organised with one executive board and governance framework (National Health Service trusts in England; health boards in Northern Ireland, Wales and Scotland). The study comprises a feasibility study in one organisation (phase I), an internal pilot trial in three organisations (phase II) and a cluster (organisation)-randomised stepped-wedge trial (phase III) targeting a minimum of 36 organisations in total. Randomisation will occur over 18 months from November 2017 with a further 12 months follow-up to assess sustainability. The behavioural intervention will be delivered to healthcare professionals involved in antibiotic prescribing or administration in adult inpatients admitted to acute/general medicine. Outcomes will be assessed in adult inpatients admitted to acute/general medicine, collected through routine electronic health records in all patients. Discussion: ARK-Hospital aims to provide a feasible, sustainable and generalisable mechanism for increasing antibiotic stopping in patients who no longer need to receive them at 'review and revise'. Trial registration: ISRCTN Current Controlled Trials, ISRCTN12674243. Registered on 10 April 2017.</p
- …
