23 research outputs found

    Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis

    Get PDF
    Background: Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. Methods: We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. Results: Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. Conclusions: KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    An in silico approach for evaluating the antitumor and epigenetic modulating potential of phenolic compounds occurring in edible and medicinal mushrooms

    No full text
    International audienceIntroduction: As part of cancer research, mycotherapy is a relatively new and promissory source of agents with immunomodulating and antitumor properties. Ongoing research projects are aiming to provide mushrooms as a new generation of "biotherapeutics". In addition to high-molecular weight polysaccharides, efforts should be made to find new anticancer drugs using low-molecular weight secondary metabolites, e.g. phenolic compounds that can inhibit or trigger specific biochemical signals leading to cancer.Methods: An in silico approach based on the structural similarity of low-molecular weight myco-compounds (phenolics) with respect to antitumor substances and molecules with modulatory effects on epigenetic events was used. For the screening of mushroom molecules with potential regulatory effects on epigenome (obtained on Web of Science, August 2015), the enzymes histone acetyltransferase (HAT), histone deacetylase (HDAC) and DNA methyltransferase (DNMT) were chosen as targets. Similarity analysis were performed with the software Saranea. Moreover, the determination of the chemical structural similitude between phenolic compounds of Pleurotus ostreatus (oyster mushroom) and antitumor reference compounds was carried out with the software Power MV 0.61. Tanimoto’s coefficients (Tc) similar or higher to 0.90 were considered as significant.Results: Seven mushroom compounds with high structural similarity to reference substances with modulatory activity on epigenetic events (Tc ≥0.90) were identified: 5 with a potential effect on histone acetylation/deacetylation, and 3 acting on the enzyme DNMT. Twenty antitumor reference compounds showed structural similarity to 3 phenols occurring in P. ostreatus, corresponding the largest number to protocatechuic acid and the flavonoids myricetin and naringin. According to its similarity to the antitumor compounds, they would act as DNA antimetabolites, antimitotic, and/or alkylating agents.Conclusion: It seems feasible to harness the natural pool of mushrooms secondary metabolites and to predict by in silico approaches their potential modulatory effects on epigenetic events and antitumor activity, in special phenolics occurring in P. ostreatus. This is an exciting advance for developing nutraceuticals/ cosmeceuticals and innovative drugs
    corecore