62 research outputs found

    Biocompatible, Multiresponsive Nanogel Composites for Codelivery of Antiangiogenic and Chemotherapeutic Agents

    Get PDF
    Single therapy approaches are usually insufficient to treat certain diseases, due to genetic differences between patients or disease resistance. Therefore, such approaches are gradually replaced by combination therapies comprising two or more drugs. In oncology, these include BRAF inhibitors and cytotoxic, antiangiogenic, or immunomodulatory agents, among others. We propose herein the use of multiresponsive nanogel composites for the codelivery of a DNA intercalator (doxorubicin) and an antiangiogenic and immunomodulatory agent (pomalidomide). We introduce a surfactant-free synthetic protocol to decorate biocompatible poly(ethylene glycol)methacrylate nanogels (PEGMA) with evenly distributed gold nanoparticles and explore their ability to deliver drugs upon stimulation by various triggers such as heat, light, and reducing agents present in the intracellular environment. We further demonstrate that an additional polymer coating on the nanogel surface can decrease uncontrolled drug leakage and modulate cellular uptake and the drug release profile

    The future of layer-by-layer assembly: A tribute to ACS Nano associate editor Helmuth Möhwald

    Get PDF
    Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles

    Fabrication of Anti-human Cardiac Troponin I Immunogold Nanorods for Sensing Acute Myocardial Damage

    Get PDF
    A facile, rapid, solution-phase method of detecting human cardiac troponin I for sensing myocardial damage has been described using gold nanorods-based biosensors. The sensing is demonstrated by the distinct change of the longitudinal surface plasmon resonance wavelength of the gold nanorods to specific antibody–antigen binding events. For a higher sensitivity, the aspect ratio of gold nanorods is increased up to ca 5.5 by simply adding small amount of HCl in seed-mediated growth solution. Experimental results show that the detecting limit of the present method is 10 ng/mL. Contrast tests reveal that these gold nanorods-based plasmonic biosensors hold much higher sensitivity than that of conventionally spherical gold nanoparticles
    corecore