77 research outputs found

    Prepoznavanje građevina pogođenih potresom temeljem korelacijske detekcije promjena obilježja teksture na SAR snimkama

    Get PDF
    The detection of building damage due to earthquakes is crucial for disaster management and disaster relief activities. Change detection methodologies using satellite images, such as synthetic aperture radar (SAR) data, have being applied in earthquake damage detection. Information contained within SAR data relating to earthquake damage of buildings can be disturbed easily by other factors. This paper presents a multitemporal change detection approach intended to identify and evaluate information pertaining to earthquake damage by fully exploiting the abundant texture features of SAR imagery. The approach is based on two images, which are constructed through principal components of multiple texture features. An independent principal components analysis technique is used to extract multiple texture feature components. Then, correlation analysis is performed to detect the distribution information of earthquake-damaged buildings. The performance of the technique was evaluated in the town of Jiegu (affected by the 2010 Yushu earthquake) and in the Kathmandu Valley (struck by the 2015 Nepal earthquake) for which the overall accuracy of building detection was 87.8% and 84.6%, respectively. Cross-validation results showed the proposed approach is more sensitive than existing methods to the detection of damaged buildings. Overall, the method is an effective damage detection approach that could support post-earthquake management activities in future events.Detekcija oštećenja građevina uzrokovanih potresom od presudne je važnosti za upravljanje rizicima od katastrofa i aktivnostima prilikom elementarnih nepogoda. Metodologije detekcije promjena, koristeći satelitske snimke kao što su podaci radara sa sintetičkim otvorom antene (SAR), korištene su u detekciji oštećenja od potresa. Informacije sadržane unutar SAR podataka, koje se odnose na oštećenja građevina uzrokovana potresom, mogu lako sadržavati šumove zbog drugih faktora. Ovaj rad prikazuje viševremenski pristup detekciji promjena kako bi se identificirale i procijenile informacije koje se odnose na oštećenja od potresa koristeći u potpunosti značajke teksture SAR snimaka. Pristup se temelji na dvije snimke koje su izrađene kroz glavne komponente višestrukih osobina tekstura. Neovisna analiza glavnih komponenti koristi se kako bi se izdvojile komponente višestrukih tekstura. Nakon toga provodi se korelacijska analiza kako bi se detektirale informacije o distribuciji građevina oštećenih potresom. Učinkovitost ove tehnike ispitana je u gradu Jiegu (kojega je 2010. godine pogodio potres Yushu) te u dolini Kathmandu (koju je 2015. godine pogodio potres Nepal), u kojoj je ukupna točnost detektiranja građevina bila 87,8%, odnosno 84,6%. Rezultati međusobne provjere valjanosti pokazali su da je predloženi pristup osjetljiviji od postojećih metoda za detektiranje oštećenih građevina. Općenito govoreći, metoda je učinkovit pristup detektiranja oštećenja koji može u budućnosti pružati potporu u aktivnostima upravljanja nakon potresa

    Low-Latency Driven Performance Analysis for Single-Cluster NOMA Networks

    Get PDF
    In this paper, we study the total effective capacity (EC) of single-cluster non-orthogonal multiple access (NOMA) networks and demonstrate the performance gain of single- cluster NOMA over user-paired NOMA and orthogonal multiple access (OMA). Specifically, the exact closed-form expression and an approximate closed-form expression at high signal-to- noise ratios (SNRs), in terms of the total EC, are derived for single-cluster NOMA networks. The derivations reveal that the total EC at high SNRs only relies on the statistical delay requirement of the strongest user and is independent of the other users’ delay requirements. Further, we theoretically analyze the total EC differences between single-cluster NOMA and user- paired NOMA/OMA communications and explore the impact of transmit SNR. Simulation results verify the accuracy of analytical results and further reveal that the single-cluster NOMA network achieves a greater gain in terms of the total EC, compared to the conventional OMA, when the number of users increases

    Angled fiber-based Fabry–Perot interferometer

    Get PDF
    Herein, we propose and experimentally demonstrate a novel, to the best of our knowledge, all-fiber Fabry–Perot (FP) interferometer that is formed by a simple angled fiber that can function as a beam splitter. According to the principle of the angled fiber, we verify the influence of an oblique angle on the light propagation path and light intensity ratio. Subsequently, angled fiber-based FP interferometers are experimentally demonstrated, and the influence of the oblique angle on the visibility of interference fringes and temperature characteristics is investigated. Finally, the temperature characteristics of this proposed FP interferometer are investigated experimentally, and the temperature sensitivity is 12.62 and 10.89 pm/°C for 42° and 40° angled fiber-based fiber FP interferometers, respectively. This proposed FP interferometer is fabricated by using a simple angled fiber, which has the advantages of ease of fabrication and all-fiber characteristics and hence can meet the requirements of mass production and high stability in various practical application areas

    Macrophage CGI-58 Deficiency Activates ROS-Inflammasome Pathway to Promote Insulin Resistance in Mice

    Get PDF
    SummaryOvernutrition activates a proinflammatory program in macrophages to induce insulin resistance (IR), but its molecular mechanisms remain incompletely understood. Here, we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD)-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO) in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPAR)γ signaling. Consequently, they overproduce reactive oxygen species (ROS) to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from oversecreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the cocultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages

    Eff ect of a comprehensive programme to provide universal access to care for sputum-smear-positive multidrugresistant tuberculosis in China: a before-and-after study

    Get PDF
    Background China has a quarter of all patients with multidrug-resistant tuberculosis (MDRTB) worldwide, but less than 5% are in quality treatment programmes. In a before-and-after study we aimed to assess the eff ect of a comprehensive programme to provide universal access to diagnosis, treatment, and follow-up for MDRTB in four Chinese cities (population 18 million). Methods We designated city-level hospitals in each city to diagnose and treat MDRTB. All patients with smear-positive pulmonary tuberculosis diagnosed in Center for Disease Control (CDC) clinics and hospitals were tested for MDRTB with molecular and conventional drug susceptibility tests. Patients were treated with a 24 month treatment package for MDRTB based on WHO guidelines. Outpatients were referred to the CDC for directly observed therapy. We capped total treatment package cost at US4644.Insurancereimbursementandprojectsubsidieslimitedpatientsexpensesto10(2011)tothosefromaretrospectivesurveyofallpatientswithMDRTBdiagnosedinthesamecitiesduringabaselineperiod(200609).Findings243patientswerediagnosedwithMDRTBorrifampicinresistanttuberculosisduringthe12monthprogrammeperiodcomparedwith92patients(equivalentto24peryear)duringthebaselineperiod.172(71243individualswereenrolledintheprogramme.Timefromspecimencollectionforresistancetestingtotreatmentinitiationdecreasedby90startedonappropriatedrugregimenincreased27times(fromnine[35172),andfollowupbytheCDCafterinitialhospitalisationincreased24times(fromone[4163[99increasedtentimes(fromtwo[8programmeperiodhadnegativeculturesorclinicalradiographicimprovement.PatientsexpensesforhospitaladmissionafterMDRTBdiagnosisdecreasedby784644. Insurance reimbursement and project subsidies limited patients’ expenses to 10% of charges for services within the package. We compared data from a 12 month programme period (2011) to those from a retrospective survey of all patients with MDRTB diagnosed in the same cities during a baseline period (2006–09). Findings 243 patients were diagnosed with MDRTB or rifampicin-resistant tuberculosis during the 12 month programme period compared with 92 patients (equivalent to 24 per year) during the baseline period. 172 (71%) of 243 individuals were enrolled in the programme. Time from specimen collection for resistance testing to treatment initiation decreased by 90% (from median 139 days [IQR 69–207] to 14 days [10–21]), the proportion of patients who started on appropriate drug regimen increased 2·7 times (from nine [35%] of 26 patients treated to 166 [97%] of 172), and follow-up by the CDC after initial hospitalisation increased 24 times (from one [4%] of 23 patients to 163 [99%] of 164 patients). 6 months after starting treatment, the proportion of patients remaining on treatment increased ten times (from two [8%] of 26 patients to 137 [80%] of 172), and 116 (67%) of 172 patients in the programme period had negative cultures or clinical–radiographic improvement. Patients’ expenses for hospital admission after MDRTB diagnosis decreased by 78% (from 796 to $174), reducing the ratio of patients’ expenses to annual household income from 17·6% to 3·5% (p<0·0001 for all comparisons between baseline and programme periods). However, 36 (15%) patients did not start or had to discontinue treatment in the programme period because of fi nancial diffi culties. Interpretation This comprehensive programme substantially increased access to diagnosis, quality treatment, and aff ordable treatment for MDRTB. The programme could help China to achieve universal access to MDRTB care but greater fi nancial risk protection for patients is needed

    Synthesis of Icariin-Zinc and its Protective Effect on Exercise Fatigue and Reproductive System Related Glands in Male Rats

    Get PDF
    Background: Icariin, a traditional Chinese medicine, plays a protective role in the treatment of exercise fatigue. Zinc, a trace element, plays an important role in the reproductive system. Therefore, we aimed to synthesize an Icariin-Zinc complex (by chemical means) and verify its protective effect on exercise fatigue and the reproductive system using animal experiments.Methods: The icariin-zinc complex was prepared by the reaction of icariin carbonyl and zinc ions (molar ratio 1:3). The molecular formula and structural formula of the complex were identified and tested. Fifty-six rats selected by swimming training were randomly divided into six groups: static control, exercise control, icariin, gluconate zinc (G-Zn group), icariin glucose zinc and icariin-zinc exercise ( low, high dose/L-E group, H-E group) groups. These groups respectively received the following doses: 1 ml/100 g, daily gavage with NS (for the first two groups), 45 mg/kg icariin, 110 mg/kg Gluconate Zinc, Icariin glucose zinc (45 mg/kg Icariin and 110 mg/kg Gluconate Zinc), 60 mg/kg icariin zinc and 180 mg/kg icariin zinc. After 3 weeks of gavage, we conducted 6 weeks of exhaustive swimming training. Test indices such as exhaustive swimming time of rats and body weight were evaluated after the last training exercise. The seminal vesicles, testes, and prostate gland were weighed, and their indices were calculated. The levels of testosterone (in the plasma) and glycogen (in the liver and muscle homogenates) were also evaluated using ELISA.Results: Compared with the static control group, the exhaustive swimming time of the rats in each group was prolonged. Compared with the other groups, the exhaustive swimming time of the L-E and H-E groups was significantly longer (p &lt; 0.01); the Icariin-Zinc complex significantly increased the exhaustive swimming time of the rats. Compared with the static control group, the plasma testosterone content of the L-E and H-E groups increased significantly (p &lt; 0.05). Compared with the exercise control group and G-Zn group, the plasma testosterone content of the H-E group also increased significantly (p &lt; 0.01). The Icariin-Zinc complex significantly increased the serum levels of testosterone in rats. Compared with the control group, the muscle glycogen reserves of each group decreased, indicating that the muscle glycogen reserves of the rats decreased after swimming. Compared with other groups, the Icariin-Zinc complex can reduce the level of glycogen in the muscles, indicating that it can increase the utilization efficiency of glycogen in muscles. Compared with the static control and exercise control groups, the testicular weight of rats in the administration groups increased slightly. The Icariin-Zinc complex increased the testicular weight, indicating that the function of the reproductive system was improved to some extent.Conclusion: Icariin-Zinc can significantly prolong the exhaustive swimming time, improve exercise ability, and increase the plasma testosterone level (which is beneficial for improving the reproductive ability of male rats). Moreover, the beneficial effect of Icariin-Zinc on the glycogen content, testis index, and other reproductive system glands is dose-dependent

    Comprehensive analysis of the cuproptosis-related gene DLD across cancers: A potential prognostic and immunotherapeutic target

    Get PDF
    DLD is a key gene involved in “cuproptosis,” but its roles in tumor progression and immunity remain unclear. Exploring the potential mechanisms and biological roles of DLD may provide new insights for therapeutic strategies for tumors. In the present study, we analyzed the role of DLD in a variety of tumors by using several bioinformatic tools. The results showed that compared with normal tissues, tumor tissues representing multiple cancers showed significant differential expression of DLD. High DLD expression was associated with a good prognosis in BRCA, KICH, and LUAD. Conversely, high expression levels of DLD were detrimental to patient prognosis in many other tumors, such as COAD, KIRC, and KIRP. In addition, the associations of DLD with infiltrating immune cells, genetic alterations and methylation levels across cancers were assessed. Aberrant expression of DLD was positively correlated with most infiltrating immune cells, especially neutrophils. The DLD methylation level was significantly decreased in COAD, LIHC, and LUSC but significantly increased in BRCA. DLD had the highest mutation rate (6.04%) in ESCA. In LUSC, patients with genetic alterations in DLD showed a poorer prognosis. At the single-cell level, the roles of DLD in regulating cancer-associated biological functions, such as metastasis, inflammation, and differentiation, were explored. Afterward, we further investigated whether several disease-associated genes could be correlated with DLD. GO enrichment analysis indicated that DLD-related genes were mainly associated with mitochondria-related cellular components, aerobic respiration and the tricarboxylic acid cycle. Finally, the correlations between DLD expression and immunomodulatory genes, immune checkpoints, and sensitivity to some antitumor drugs were investigated. It is worth noting that DLD expression was positively correlated with immune checkpoint genes and immunomodulatory genes in most cancers. In conclusion, this study comprehensively analyzed the differential expression, prognostic value and immune cell infiltration-related function of DLD across cancers. Our results suggest that DLD has great potential to serve as a candidate marker for pancancer prognosis and immunotherapy and may provide a new direction for cancer treatment development

    Transient Receptor Potential channels (TRP) in GtoPdb v.2023.1

    Get PDF
    The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [176, 1072]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [730]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [401, 686, 1155, 256]. The established, or potential, involvement of TRP channels in disease [1126] is reviewed in [448, 685], [688] and [464], together with a special edition of Biochemica et Biophysica Acta on the subject [685]. Additional disease related reviews, for pain [633], stroke [1135], sensation and inflammation [988], itch [130], and airway disease [310, 1051], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [805]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [1009, 689, 801]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [293]). TRPA1 activation of sensory neurons contribute to nociception [414, 890, 602]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [575, 60, 365, 577]. Alkenals with &#945;, &#946;-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [26, 60]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [424, 511, 1081, 1080]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [425, 212]. The electron cryo-EM structure of TRPA1 [740] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short &#8216;pore helices&#8217; pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [284, 778, 18, 4, 94, 446, 739, 70]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [765, 953, 1072]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [18] and [447]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [741, 18, 770, 820, 1121, 157, 726, 64, 158]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [347, 346]. Activation of TRPC channels by lipids is discussed by [70]. Important progress has been recently made in TRPC pharmacology [805, 619, 436, 102, 851, 191, 291]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [295, 71, 885, 1031, 1025, 154, 103, 561, 913, 409]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [229]. TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [1114, 723, 724, 1115, 539, 1168, 1109].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [347].TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [275, 346, 741, 1151]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [398, 708]. TRPM3 (reviewed by [714]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [941]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [713, 940]. TRPM3 may contribute to the detection of noxious heat [1017]. TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells). The direct activators are calcium, adenosine diphosphate ribose (ADPR) [970] and cyclic ADPR (cADPR) [1118]. As for many ion channels, PI(4,5)P2 must also be present [1109]. Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [239]. Recent studies have reported structures of human (hs) TRPM2, which demonstrate two ADPR binding sites in hsTRPM2, one in the N-terminal MHR1/2 domain and the other in the C-terminal NUDT9-H domain. In addition, one Ca2+ binding site in the intracellular S2-S3 loop is revealed and proposed to mediate Ca2+ binding that induces conformational changes leading the ADPR-bound closed channel to open [387, 1027]. Meanwhile, a quadruple-residue motif (979FGQI982) was identified as the ion selectivity filter and a gate to control ion permeation in hsTRPM2 [1120]. TRPM2 is involved in warmth sensation [848], and contributes to several diseases [76]. TRPM2 interacts with extra synaptic NMDA receptors (NMDAR) and enhances NMDAR activity in ischemic stroke [1164]. Activation of TRPM2 in macrophages promotes atherosclerosis [1165, 1147]. Moreover, silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction [1028]. Recent studies have designed various compounds for their potential to selectively inhibit the TRPM2 channel, including ACA derivatives A23, and 2,3-dihydroquinazolin-4(1H)-one derivatives [1137, 1139]. TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [1072]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [327]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [593]. Mutations are associated with conduction defects [404, 593, 879]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [993] and dendritic cell migration [52]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [537] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [513]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [246]. TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (&#8216;chanzymes&#8217;) [172]. These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. PIP2 is required for TRPM6 and TRPM7 activation [810, 1077]. When either gene is deleted in mice, the result is embryonic lethality [413, 1065]. The C-terminal kinase region of TRPM6 and TRPM7 is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones [479, 480]. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [622]. The putative metal transporter proteins CNNM1-4 interact with TRPM7 and regulate TRPM7 channel activity [40, 467]. TRPM8Is a channel activated by cooling and pharmacological agents evoking a &#8216;cool&#8217; sensation and participates in the thermosensation of cold temperatures [63, 178, 224] reviewed by [1011, 562, 457, 649]. Direct chemical agonists include menthol and icilin[1086]. Besides, linalool can promote ERK phosphorylation in human dermal microvascular endothelial cells, down-regulate intracellular ATP levels, and activate TRPM8 [68]. Recent studies have found that TRPM8 has typical S4-S5 connectomes with clear selective filters and exowell rings [512], and have identified cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gated pathways [1111]. Moreover, the last 36 amino acids at the carboxyl terminal of TRPM8 are key protein sequences for TRPM8's temperature-sensitive function [194]. TRPM8 deficiency reduced the expression of S100A9 and increased the expression of HNF4&#945; in the liver of mice, which reduced inflammation and fibrosis progression in mice with liver fibrosis, and helped to alleviate the symptoms of bile duct disease [556]. Channel deficiency also shortens the time of hypersensitivity reactions in migraine mouse models by promoting the recovery of normal sensitivity [12]. A cyclic peptide DeC&#8208;1.2 was designed to inhibit ligand activation of TRPM8 but not cold activation, which can eliminate the side effects of cold dysalgesia in oxaliplatin-treated mice without changing body temperature [9]. Analysis of clinical data shows that TRPM8-specific blockers WS12 can reduce tumor growth in colorectal cancer xenografted mice by reducing transcription and activation of Wnt signaling regulators and &#946;-catenin and its target oncogenes, such as C-Myc and Cyclin D1 [732]. TRPML (mucolipin) familyThe TRPML family [782, 1132, 775, 1084, 190] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [822]. TRPML2 and TRPML3 show increased channel activity in low luminal sodium and/or increased luminal pH, and are activated by similar small molecules [319, 147, 877]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [782, 690]). TRPP (polycystin) familyThe TRPP family (reviewed by [216, 214, 300, 1061, 374]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [1072]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [345]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [905]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [995]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6. TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [762, 882, 922]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [844]. The pharmacology of TRPV1 channels is discussed in detail in [329] and [1015]. TRPV2 is probably not a thermosensor in man [736], but has recently been implicated in innate immunity [547]. Functional TRPV2 expression is described in placental trophoblast cells of mouse [204]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [127, 530]. TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [1057, 205, 651, 270]).TRPV6 is reported to play a key role in calcium transport in the mouse placenta [1056]

    Transient Receptor Potential channels (TRP) in GtoPdb v.2023.2

    Get PDF
    The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [176, 1072]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [730]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [401, 686, 1155, 256]. The established, or potential, involvement of TRP channels in disease [1126] is reviewed in [448, 685], [688] and [464], together with a special edition of Biochemica et Biophysica Acta on the subject [685]. Additional disease related reviews, for pain [633], stroke [1135], sensation and inflammation [988], itch [130], and airway disease [310, 1051], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [805]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [1009, 689, 801]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [293]). TRPA1 activation of sensory neurons contribute to nociception [414, 890, 602]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [575, 60, 365, 577]. Alkenals with &#945;, &#946;-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [26, 60]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [424, 511, 1081, 1080]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [425, 212]. The electron cryo-EM structure of TRPA1 [740] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short &#8216;pore helices&#8217; pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions. TRPC (canonical) familyMembers of the TRPC subfamily (reviewed by [284, 778, 18, 4, 94, 446, 739, 70]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gq/11-coupled receptors, or receptor tyrosine kinases (reviewed by [765, 953, 1072]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [4]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signalling complexes are detailed in [18] and [447]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or compenents of mulimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [741, 18, 770, 820, 1121, 157, 726, 64, 158]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [347, 346]. Activation of TRPC channels by lipids is discussed by [70]. Important progress has been recently made in TRPC pharmacology [805, 619, 436, 102, 851, 191, 291]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [295, 71, 885, 1031, 1025, 154, 103, 561, 913, 409]. TRPC1/C4/C5 subgroup TRPC1 alone may not form a functional ion channel [229]. TRPC4/C5 may be distinguished from other TRP channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [1114, 723, 724, 1115, 539, 1168, 1109].TRPC3/C6/C7 subgroup All members are activated by diacylglycerol independent of protein kinase C stimulation [347].TRPM (melastatin) familyMembers of the TRPM subfamily (reviewed by [275, 346, 741, 1151]) fall into the five subgroups outlined below. TRPM1/M3 subgroupIn darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6 , leading to activation of Go . This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [398, 708]. TRPM3 (reviewed by [714]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [941]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [713, 940]. TRPM3 may contribute to the detection of noxious heat [1017]. TRPM2TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells). The direct activators are calcium, adenosine diphosphate ribose (ADPR) [970] and cyclic ADPR (cADPR) [1118]. As for many ion channels, PI(4,5)P2 must also be present [1109]. Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [239]. Recent studies have reported structures of human (hs) TRPM2, which demonstrate two ADPR binding sites in hsTRPM2, one in the N-terminal MHR1/2 domain and the other in the C-terminal NUDT9-H domain. In addition, one Ca2+ binding site in the intracellular S2-S3 loop is revealed and proposed to mediate Ca2+ binding that induces conformational changes leading the ADPR-bound closed channel to open [387, 1027]. Meanwhile, a quadruple-residue motif (979FGQI982) was identified as the ion selectivity filter and a gate to control ion permeation in hsTRPM2 [1120]. TRPM2 is involved in warmth sensation [848], and contributes to several diseases [76]. TRPM2 interacts with extra synaptic NMDA receptors (NMDAR) and enhances NMDAR activity in ischemic stroke [1164]. Activation of TRPM2 in macrophages promotes atherosclerosis [1165, 1147]. Moreover, silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction [1028]. Recent studies have designed various compounds for their potential to selectively inhibit the TRPM2 channel, including ACA derivatives A23, and 2,3-dihydroquinazolin-4(1H)-one derivatives [1137, 1139]. TRPM4/5 subgroupTRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [1072]. A splice variant of TRPM4 (i.e.TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [327]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [593]. Mutations are associated with conduction defects [404, 593, 879]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [993] and dendritic cell migration [52]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [537] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [513]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [246]. TRPM6/7 subgroupTRPM6 and 7 combine channel and enzymatic activities (&#8216;chanzymes&#8217;) [172]. These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at ~0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. PIP2 is required for TRPM6 and TRPM7 activation [810, 1077]. When either gene is deleted in mice, the result is embryonic lethality [413, 1065]. The C-terminal kinase region of TRPM6 and TRPM7 is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones [479, 480]. TRPM7 is responsible for oxidant- induced Zn2+ release from intracellular vesicles [3] and contributes to intestinal mineral absorption essential for postnatal survival [622]. The putative metal transporter proteins CNNM1-4 interact with TRPM7 and regulate TRPM7 channel activity [40, 467]. TRPM8Is a channel activated by cooling and pharmacological agents evoking a &#8216;cool&#8217; sensation and participates in the thermosensation of cold temperatures [63, 178, 224] reviewed by [1011, 562, 457, 649]. Direct chemical agonists include menthol and icilin[1086]. Besides, linalool can promote ERK phosphorylation in human dermal microvascular endothelial cells, down-regulate intracellular ATP levels, and activate TRPM8 [68]. Recent studies have found that TRPM8 has typical S4-S5 connectomes with clear selective filters and exowell rings [512], and have identified cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gated pathways [1111]. Moreover, the last 36 amino acids at the carboxyl terminal of TRPM8 are key protein sequences for TRPM8's temperature-sensitive function [194]. TRPM8 deficiency reduced the expression of S100A9 and increased the expression of HNF4&#945; in the liver of mice, which reduced inflammation and fibrosis progression in mice with liver fibrosis, and helped to alleviate the symptoms of bile duct disease [556]. Channel deficiency also shortens the time of hypersensitivity reactions in migraine mouse models by promoting the recovery of normal sensitivity [12]. A cyclic peptide DeC&#8208;1.2 was designed to inhibit ligand activation of TRPM8 but not cold activation, which can eliminate the side effects of cold dysalgesia in oxaliplatin-treated mice without changing body temperature [9]. Analysis of clinical data shows that TRPM8-specific blockers WS12 can reduce tumor growth in colorectal cancer xenografted mice by reducing transcription and activation of Wnt signaling regulators and &#946;-catenin and its target oncogenes, such as C-Myc and Cyclin D1 [732]. TRPML (mucolipin) familyThe TRPML family [782, 1132, 775, 1084, 190] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytotic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [822]. TRPML2 and TRPML3 show increased channel activity in low luminal sodium and/or increased luminal pH, and are activated by similar small molecules [319, 147, 877]. A naturally occurring gain of function mutation in TRPML3 (i.e. A419P) results in the varitint waddler (Va) mouse phenotype (reviewed by [782, 690]). TRPP (polycystin) familyThe TRPP family (reviewed by [216, 214, 300, 1061, 374]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [1072]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been uniformed to be called TRPP2 [345]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio. [905]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels. TRPV (vanilloid) familyMembers of the TRPV family (reviewed by [995]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6. TRPV1-V4 subfamilyTRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [762, 882, 922]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [844]. The pharmacology of TRPV1 channels is discussed in detail in [329] and [1015]. TRPV2 is probably not a thermosensor in man [736], but has recently been implicated in innate immunity [547]. Functional TRPV2 expression is described in placental trophoblast cells of mouse [204]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [127, 530]. TRPV5/V6 subfamily TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [1057, 205, 651, 270]).TRPV6 is reported to play a key role in calcium transport in the mouse placenta [1056]

    Evaluating the impact of decentralising tuberculosis microscopy services to rural township hospitals in gansu province, china

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, the Ministry of Health issued the policy of decentralising microscopy services (MCs) to one third of all township hospitals in China. The study was conducted in Gansu Province, a poor western one in China. Ganzhou was one county in Gansu Province. Ganzhou County was identified as a unique case of further decentralisation of tuberculosis (TB) treatment services in township hospitals. The study evaluated the impact of the MC policy on providers and patients in Gansu Province. The second objective was to assess the unique case of Ganzhou County compared with other counties in the province.</p> <p>Methods</p> <p>Both quantitative and qualitative methods were used. All 523 MCs in the province completed an institutional survey regarding their performance. Four counties were selected for in-depth investigation, where 169 TB suspects were randomly selected from the MC and county TB dispensary registers for questionnaire surveys. Informant interviews were conducted with 38 health staff at the township and county levels in the four counties.</p> <p>Results</p> <p>Gansu established MCs in 39% of its township hospitals. From January 2006 to June 2007, 8% of MCs identified more than 10 TB sputum smear positive patients while 54% did not find any. MCs identified 1546 TB sputum smear positive patients, accounting for 9% of the total in the province. The throughputs of MCs in Ganzhou County were eight times of those in other counties. Interviews identified several barriers to implement the MC policy, such as inadequate health financing, low laboratory capacity, lack of human resources, poor treatment and management capacities, and lack of supervisions from county TB dispensaries.</p> <p>Conclusion</p> <p>Microscopy centre throughputs were generally low in Gansu Province, and the contribution of MCs to TB case detection was insignificant taking account the number of MCs established. As a unique case of full decentralisation of TB service, Ganzhou County presented better results. However, standards and quality of TB care needed to be improved. The MC policy needs to be reviewed in light of evidence from this study.</p
    corecore