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Earthquake-Induced Building Recognition Using 
Correlation Change Detection of Texture Features 
Based on SAR Data

Qiang LI, Lixia GONG, Jingfa ZHANG – Beijing1

ABSTRACT. The detection of building damage due to earthquakes is crucial for di-
saster management and disaster relief activities. Change detection methodologies 
using satellite images, such as synthetic aperture radar (SAR) data, have being 
applied in earthquake damage detection. Information contained within SAR data 
relating to earthquake damage of buildings can be disturbed easily by other factors. 
This paper presents a multitemporal change detection approach intended to identify 
and evaluate information pertaining to earthquake damage by fully exploiting the 
abundant texture features of SAR imagery. The approach is based on two images, 
which are constructed through principal components of multiple texture features. An 
independent principal components analysis technique is used to extract multiple 
texture feature components. Then, correlation analysis is performed to detect the dis-
tribution information of earthquake-damaged buildings. The performance of the te-
chnique was evaluated in the town of Jiegu (affected by the 2010 Yushu earthquake) 
and in the Kathmandu Valley (struck by the 2015 Nepal earthquake) for which the 
overall accuracy of building detection was 87.8% and 84.6%, respectively. Cross-vali-
dation results showed the proposed approach is more sensitive than existing methods 
to the detection of damaged buildings. Overall, the method is an effective damage 
detection approach that could support post-earthquake management activities in fu-
ture events.
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1. Introduction

Earthquakes are sudden natural disasters that can cause considerable loss of 
human life, widespread damage to buildings and infrastructure, and the occurren-
ce of other natural hazards such as fires, floods, landslides, and debris flows. 
Among these, the collapse of buildings is generally related to the greatest loss 
of  life and the highest economic cost. Information regarding building damage 
is  essential for rescue, humanitarian, and reconstruction operations in earth
quake disaster areas. Optical and synthetic aperture radar (SAR) data have been 
applied widely in relation to building damage detection (Matsuoka and Yamazaki 
2004, Turker and San 2003, Yusuf et al. 2001, Saito et al. 2004, Arciniegas et al. 
2007, Gamba et al. 2007, Hoffmann 2007, Chini et al. 2009, Chini et al. 2011, 
Miura et al. 2013, Ehrlich et al. 2009, Balz and Liao 2010, Brunner et al. 2010, 
Pan and Tang 2010, Dell’Acqua et al. 2010, Corbane et al. 2011, Tian et al. 2015, 
Miura et al. 2016). However, availability of optical images cannot be guaranteed 
because of clouds and atmospheric conditions. Atmospheric effects on SAR data 
are negligible and thus, the use of SAR backscattering intensity data has shown 
some successes in the detection of earthquake damage (Bazi et al. 2005, Dong et 
al. 2011, Trianni and Gamba 2008, Gong et al. 2013, Jin et al. 2012, Liu et al. 
2010).

Low- and medium-resolution SAR images can provide a simple, quick, and effec
tive means with which to monitor and evaluate earthquake disasters based 
on  the  detection of changes in images obtained before and after an earthquake. 
If  an  earthquake causes damage to buildings, there will be a resulting change 
of  the  echo signal, which will lead to changes in intensity, coherence, and 
correlation.  Generally, the echo signal from a built-up area is relatively sta-
ble.  Therefore, if the relevant indicators of an echo signal from a built-up area 
change, it can be inferred that changes must have occurred to the building stru-
ctures.

The relationships between the changes of intensity correlation and the interferen-
ce coherence coefficient with the degree of damage to buildings after the 1995 
Kobe earthquake in Japan have been evaluated using ERS-1 SAR imagery 
(Yonezawa and Takeuchi 2001, Yonezawa et al. 2002). In addition, it was found 
that the variation of intensity correlation associated with complex coherence was 
similar. In general, the correlation is arranged according to the size of different 
object types: urban area > farmland > forest, i.e., the larger the baseline, the 
poorer the correlation. For urban areas, the damage decorrelation phenomenon is 
obvious in small baseline data. Decorrelation in SAR imagery can describe the 
intensity changes attributable to building collapse or damage. The interference is 
caused by changes in the overall spatial distribution and to the scattering bodies 
themselves.

Research has shown that a short baseline distance is more conducive to the dete-
ction of urban damage. For example, Matsuoka and Yamazaki (2004) combined 
intensity change information and the coherence coefficient to analyse areas of a 
city damaged by an earthquake. They proposed a classification index to categorize 
the degree of earthquake damage to buildings, which was based on a statistical 
relationship between the image coherence coefficient and the backscatter coeffi-
cient difference using ERS-1 SAR imagery. Their technique was demonstrated to 
achieve good results in a case study of the 1995 Kobe earthquake. Subsequently, 
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the same authors used ASAR ENVISAT image intensity to detect areas damaged 
by the 2003 Bam earthquake in Iran (Matsuoka and Yamazaki 2005). The inten-
sity differences and correlation features of SAR images were used to construct a 
discriminant function to extract the damaged area. This model was later improved 
and applied to both the 1995 Kobe earthquake and the Peruvian 2007 Pisco ear-
thquake using L-band ALOS PALSAR images. A quantitative description between 
the SAR image intensity difference and the correlation coefficient and the damage 
intensity was established using SAR images obtained both before and after the 
earthquakes, for which the derived results were considered satisfactory (Matsuoka 
and Nojima 2010).

In SAR data of a city, buildings are often depicted as areas of high brightness. 
Furthermore, because of the design of roads and the orderly arrangement of ho-
uses, buildings also tend to be depicted as neat patterns of high values of greys-
cale pixels, which constitute obvious texture features. Therefore, SAR images of 
urban areas have stable textural characteristics with which it is possible to detect 
changes in the urban environment.

Many parameters are related to the textural characteristics of SAR images and 
the information regarding change is contained in different channels. Therefore, it 
is possible that some available information might be lost and erroneous results 
derived. In view of this problem, this paper proposes a method based on a princi-
pal component analysis (PCA) of the texture features to detect correlation change. 
The method comprises two principal steps. The first step analyses the parameters 
of the textural characteristics of different buildings with different degrees of ear-
thquake-related damage to obtain the principal components (PCs). The second 
step calculates the correlation coefficient of the PCs of the previous step and it 
then extracts earthquake damage information.

The remainder of this paper is organized as follows. Section 2 describes the deta-
il of the method proposed for change detection based on the PCA of texture fea-
tures. Section 3 introduces the study area and the data sets. Section 4 presents 
the experimental results, where two data sets are used to demonstrate the effecti-
veness of the method. Section 5 discusses the extraction accuracy of the different 
methods and, finally, the conclusions are presented in Section 6.

2. Materials and Methods

Before undertaking feature analysis, SAR images need to be processed by filtering 
to reduce the influence of speckle noise. Many filtering algorithms are available 
for this process, such as the Lee filter, Frost filter, enhanced Kuan filter, and 
Gamma filter. In this study, the Lee filter with a 3  3 window was used. The 
method proposed in this paper is divided into two main processes: (1) the genera-
tion of the PCs of texture features and (2) the automatic analysis of PC correlati-
on. The technical flowchart of the method is shown in Fig. 1.
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Fig. 1. Technical flowchart of the proposed correlation change detection method.

2.1. Generation of optimal texture features

The texture of SAR data mainly reflects the spatial distribution and roughness of 
the irradiated surface, i.e., the characteristics of the object’s surface, which is 
important for distinguishing surface features (Torres-Torriti and Jouan 2001). 
Because of the relative lack of spatial information in SAR imagery, the rich textu-
ral information is considered the optimal feature in terms of image information 
recognition and thus, texture analysis of SAR imagery has become increasingly 
used in a variety of fields.
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Different targets have different texture features in SAR images (Manjunath et al. 
1996). This means that statistical analysis is an effective method for the interpre-
tation of the texture features of SAR imagery. Statistical analysis methods are 
mainly used to analyse the texture features within a small area of the image, given 
the condition that the texture primitives are unknown or have not yet been dete-
cted. This is performed mainly to describe the random and spatial statistical 
characteristics of the texture primitives or local patterns, in order to show consi-
stency within the region and differences between regions. The statistical method 
plays an important role in texture analysis and it must have good adaptability to 
the details and randomness of the texture, especially with regard to the complexi-
ty of the distribution of natural ground objects. There are many different texture 
analysis techniques (He et al. 1987, Beliakov et al. 2008, Suyash 2006), e.g., the 
Linde Buzo Gray, Kekre’s Proportionate Error (Kekre et al. 2010), and greysca-
le-level co-occurrence matrix (GLCM) algorithms. Texture feature extraction ba-
sed on a co-occurrence matrix of greyscale levels is a classical statistical analysis 
method that has been applied to the texture extraction of high-resolution and 
multispectral remote sensing images (Hu et al. 2009).

The co-occurrence probability texture feature uses a GLCM to describe the textu-
re features (Pesaresi and Benediktsson 2001). The GLCM emphasizes the spatial 
dependence of the greyscale level, which is characterized by the spatial relation of 
the pixels in a texture pattern (Chen and Deng 2002).The GLCM is a matrix fun-
ction of pixel distance and angle. It reflects the integrated information of the 
image in terms of direction, distance, change of amplitude, and speed by calcula-
ting the correlation between two points (Clausi and Zhao 2001). Haralick et al. 
(1973) proposed 14 features based on GLCM for textural analysis. These features 
measure different aspects of the GLCM and some of the features are correlated. 
Here, eight texture features are chosen for the analysis: mean (ME), variance 
(VA), contrast (CON), entropy (ENT), homogeneity (HOM), dissimilarity (DI), 
correlation (COR), and angular second moment (ASM).

2.1.1. Determination of texture parameters

When textural measures derived from the GLCM are used, some fundamental 
parameters should be defined, including orientation values, step size, the window 
size used to calculate the GLCM, and image quantization level.

The arrangement of buildings in an earthquake area is often complex and diverse, 
which means it is appropriate to take an average value of four directions: 0°, 45°, 
90° and 135° as the GLCM of the centre pixel position of the local image. The 
change of image quantization level has little effect on the GLCM of the image; 
therefore, a value of 64 is adopted here to calculate the GLCM. Smaller step sizes 
are better suited to reflect the textural characteristics; here, a step size of 1 is 
adopted.

The biggest impact on the feature value is the size of the window. Ground inve-
stigation can categorize earthquake-related damage to buildings into five catego-
ries, whereas remotely sensed earthquake-related damage is divided into three 
categories: intact buildings, moderately damaged buildings, and destroyed buildin-
gs. This paper analyses the parameters of samples in three degrees using different 
window sizes in order to choose the optimum. Taking variance and entropy as 
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examples, both quantities are calculated for the change trends of different feature 
values using window sizes that vary from 3  3 to 51  51 in intervals of four. 
Fig. 2 presents the evolution of variance in relation to window size for the textu-
ral measures.

The variances of the buildings damaged at different levels reach a maximum for 
a window size of 11  11, following which the variances of the textural features 
of VA and ENT decrease with larger window sizes. For entropy change, the abili-
ty to distinguish between the degrees of intact and moderately damaged buildings 
is poor, but the results for destroyed buildings are better. The statistical results 
show an 11  11 pixel window to be an appropriate choice for the textural mea-
sures.

Fig. 2. Evolution of variance in relation to window size for textural measures.

2.1.2. Texture feature selection

Multiple texture features have high correlation and feature redundancy. To redu-
ce their inter-correlation, it is necessary to choose optimal texture feature para-
meters for the statistical analysis. The method of sample statistical analysis is 
adopted in this experiment. In grouped buildings, the selection of moderately 
damaged buildings is influenced considerably by humans and the texture feature 
values of intact and damaged buildings can cover those of moderately damaged 
buildings. Consequently, intact and destroyed buildings are chosen to participate 
in this analysis. Samples that were obviously buildings were chosen to determine 
the statistical characteristics. These samples included 25 intact building samples 
and 39 destroyed building samples. The texture feature values of the samples are 
computed separately. To perform the comparative analysis, the parameters are 
expanded by a factor of 10. Fig. 3 illustrates the statistical analysis of the range 
of the feature values. The maximum and minimum values of the ME, VA, and 
HOM parameters are either close or have certain differences between intact and 
destroyed buildings. There is no intersection between the parameters of the diffe-
rent building categories and therefore, the feature parameters can be used to 
distinguish buildings with different degrees of damage. In the test area of the SAR 
image, the ME, VA, and HOM parameters are all capable of characterizing the 
different degrees of earthquake-related damage of the buildings.
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Fig. 3.	Statistical distribution of SAR image characteristic parameters of different types of 
building. For improved clarity, the scale of the values is enlarged by a factor of 10.

2.2. PCA

Different features of the data might contain significant correlations, the data set 
might have few samples and many features (i.e., the data set comprises a small 
number of samples in high dimensional space), and the data might contain noise. 
Such problems can lead to an increase in the complexity of the learning algorithm 
and to a reduction of the generalization ability. PCA is a simple nonparametric 
method that can overcome these problems to a certain extent, which is why it has 
been adopted widely in the fields of machine learning and pattern recognition 
(Baraldi and Parmiggiani 1995, Jolliffe 1986). PCA is able to determine the subs-
pace of a feature vector that causes a data set to be projected onto the subspace 
(Abdi and Williams 2010); thus, PCA is often used for data compression (Clausen 
and Wechsler 2000, Sharma et al. 2012). In the field of machine learning, PCs are 
often considered to contain key features of information data and thus, PCA is 
often used for feature extraction and dimensionality reduction (Sharma et al. 
2012, Martis et al. 2009). In addition, PCA is also often used for signal denoising 
(Kuncheva and Faithfull 2014).

The greatest advantage of PCA is that there is no parameter setting and optimi-
zation requirement in the process of calculation. The central idea of PCA is to 
reduce the dimensions of the data set as much as possible while preserving its 
variance. The combination of multiple texture features will have redundant 

http://academic.research.microsoft.com/Author/2035139/flavio-parmiggiani
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information in the characterization of the seismic damage of buildings, which will 
affect the effectiveness of the method to a certain extent. The method of PCA can 
be used to eliminate the influence of redundant information and to maximize the 
advantage of the texture features. Since the first PC covers more than 90% of all 
information, we think the first PC might be appropriate for the analysis and for 
information detection.

2.3. Correlation change detection

Correlation coefficient analysis is a method based on neighbourhood change dete-
ction, which considers adjacent regions rather than isolated pixels; thus, it reduces 
the influence of noise. The correlation between SAR images at different time 
phases can be used to determine the differences between the images. Its definition 
is as follows:
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where m and N represent the window size; Yl s,  and Xl s,  are the intensity values 
of the corresponding pixel of the image before and after the earthquake, respec
tively; and Y  and X  represent the average greyscale level of the image before 
and after the earthquake, respectively. The range of the correlation coefficient r  
is [−1, 1] and the absolute value of r  is close to 1. The closer the linear rela
tionship between the two images, the higher the degree of similarity. In this expe-
riment, the correlation analysis calculation window size is taken as 3 and the 
correlation coefficient r  adopts the absolute value; therefore, its value range is 
[0, 1].

3. Case study and data sets

The investigated case studies are the earthquakes that struck Yushu County on 
14 April 2010 (Mw 7.1) and Nepal on 25 April 2015 (Mw 7.0). This analysis is 
based on several images, as shown in Table 1. The epicentre of the Yushu earthqu-
ake was located near the town of Jiegu in Yushu County (Qinghai Province, China) 
and the epicentral intensity was 9 degrees. This earthquake affected an area of 
about 30,000 m2, causing more than 2000 deaths and huge economic losses (Yu 
2010, Li et al. 2013). The main sensor for detecting Yushu earthquake damage is 
the ALOS PALSAR, which is operated by the Japan Aerospace Exploration Agen-
cy. It operates in the L-band, which allows higher coherence over longer periods 
compared with SAR sensors using the X- or C-bands. This sensor provides high-re-
solution data because of its very accurate orbital control and its revisit frequency 
is adequate for meeting the requirements of land and disaster monitoring.
Following the Nepal earthquake, 67,871 fully damaged buildings and 73,624 par-
tially damaged buildings were reported in the Kathmandu Valley. The main data 
used in the analysis comprise two multitemporal SAR images acquired on 20 April 
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and 28 April 2015 by the Sentinel-1 satellite, which is operated by the European 
Space Agency. The spatial resolution of the images is 12 m. Details of the times 
of data acquisition and image resolution are presented in Table 1. The two data 
sets are shown in Fig. 4.

Table 1. Satellite images used in this study.

Area Satellite images Acquisition date Spatial resolution (m)

The town of Jiegu in 
Yushu earthquake

ALOS-PALSAR 2010/01/15 16

ALOS-PALSAR 2010/04/17 16

Kathmandu Valley in 
Nepal earthquake

Sentinel-1 2015/4/20 12

Sentinel-1 2015/4/28 12

Fig. 4.	Multitemporal SAR images of the Yushu and Nepal earthquake zones: (a) and (b) 
ALOS SAR images before and after the Yushu earthquake, respectively and (c) 
and (d) Sentinel-1 SAR images before and after the Nepal earthquake, respec
tively.
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4. Results

In this section, the experimental results of different algorithms are presented. 
Furthermore, the parameter setting used in our experiment is given. Prior to 
analysis, the images were registered using the ENVI software automatic registra-
tion algorithm. To obtain texture features, several parameters must be chosen. In 
the step of deriving the GLCM, the window size is set to 11  11. In the step of 
the PCA, the first PC is adopted to obtain the results. The window size of the 
correlation calculation is 3  3. In the correlation threshold classification, Gong 
and Zhang (2013) summarized the relationship between the correlation threshold 
and damage to buildings using ALOS data for the Dujiangyan area (Fig. 5) and 
we refer to these threshold parameters to obtain our results.

Fig. 5.	Statistical distribution of SAR image characteristic parameters of different types 
of building.

To verify the feasibility and accuracy of our proposed method, we display the nume-
rical results using two different data sets. All experiments aimed to verify the 
following points: (1) to demonstrate that the proposed PC texture feature correlation 
(TFC) could provide better performance compared with original intensity correlation 
(OTC) and TFC and (2) to show that change detection based on PCA of texture has 
greater accuracy compared with traditional texture methods. With regard to the first 
point, three change detection methods are compared to verify the effectiveness of 
PCTFC. To address the second point, the PCA of texture is compared against a sin-
gle texture used in the change detection method under the same situation.

4.1. Change detection based on principal component texture feature correlation

Based on image filtering, the texture feature value was calculated using the GLCM 
method and the values of the three characteristic parameters (ME, CV, and HOM) 
were extracted. Fig. 6 presents the first PC of the texture features of ME, CV, and 
HOM before and after the earthquake. The correlation between the PCs was cal-
culated in conjunction with field survey data (i.e., damage to each building).



Li, Q. et al.: Earthquake-Induced Building Recognition Using Correlation…, Geod. list 2018, 2, 93–112	 103

                  (a)                                      (b)
Fig. 6. First PC of texture features of ME, CV, and HOM: (a) before and (b) after the Yushu 

earthquake.

Fig. 7.	Distribution of earthquake damage using the proposed method. (a) Distribution 
map of building damage caused by the Yushu earthquake. The extraction results 
are masked by building area. The base image map is a QuickBird image. (b) Re-
sult of comparison of the Yushu earthquake. (c) Distribution map of building da-
mage caused by the Nepal earthquake. The discrete pixels in the result are proces-
sed by merging. (d) Result of visual interpretation of an optical image. The image 
for visual interpretation was a GaoFen-2 (GF-2) image. The unit of interpretation 
is a single building. For details on the standard of interpretation, see the main text.



104	 Li, Q. et al.: Earthquake-Induced Building Recognition Using Correlation…, Geod. list 2018, 2, 93–112

We selected an empirical threshold to segment the correlation coefficient and then 
merged the discrete pixels. Fig. 7(a) illustrates the distribution map of damage 
caused by the Yushu earthquake and Fig. 7(b) presents results for comparison 
(Guo et al. 2010). Fig. 7(c) illustrates the distribution map of damage caused by 
the Nepal earthquake. Because of the lack of field survey data in relation to the 
Nepal earthquake, we obtained the building distribution map by careful interpre-
tation of a GF-2 post-earthquake optical image for our analysis. The results of the 
interpretation are shown in Fig. 7(d).

4.2. Change detection based on the original intensity correlation

To compare the characterization ability of texture features, SAR intensity data 
were used for reference. The intensity image was used directly for the correlation 
analysis to obtain the distribution of the buildings based on image pre-processing. 
Fig. 8(a) and 8(b) presents the distribution map of the earthquake damage results 
for Jiegu and Kathmandu Valley, respectively.

Fig. 8.	Distribution of the OTC results of earthquake damage. (a) Distribution of the OTC 
results of Yushu earthquake damage. The base image map is a QuickBird image. 
The discrete pixels in the result are processed by merging. (b) Distribution of the 
OTC results of Nepal earthquake damage. The discrete pixels in the result are 
processed by merging.

4.3. Change detection based on texture feature correlation

To compare the difference between multiple and single texture features, we select 
the single texture feature of the HOM parameter to compare the results. HOM is a 
measure of the local greyscale homogeneity of an image. The HOM feature parame-
ter was chosen as the variable for calculating the correlation using the same window 
size and the distribution of the buildings was analysed. Fig. 9(a) and 9(b) presents 
the distribution map of the earthquake damage results for Jiegu and Kathmandu 
Valley, respectively, using the HOM feature correlation change detection.
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Fig. 9.	Distribution of the TFC results of earthquake damage. (a) Distribution of the TFC 
results of Yushu earthquake damage. The base image map is a QuickBird image. 
The discrete pixels in the result are processed by merging. (b) Distribution of the 
TFC results of Nepal earthquake damage. The discrete pixels in the result are 
processed by merging.

5. Discussion

Following the performance outlined in the previous sections, the performance of 
PCTFC was compared with OTC and TFC quantitatively using prepared interpre-
tation images. In addition to visual inspection, four quantitative measures for 
evaluating the change detection results were used to assess the quality of the in-
formation detected. The quantitative analysis of the change detection results inc-
luded extraction accuracy (EA), missed rate (MR), false detection rate (FDR), and 
overall accuracy (OA), which are calculated as follows:

	 EA ea fa
Ta= −( ) ,	 (2)

	 MR ma
Ta ,	 (3)

	 FDR fa
Ta ,	 (4)

where ea  is the extraction area, fa  is the false detection area, ma  is the missing 
area, and Ta  is the field survey area. The calculation method for OA is the same 
as for EA and it expresses the overall accuracy of the three types of buildings with 
different degrees of damage.
The accuracy parameters of the PCTFC method are presented in Tables 2 and 
3.  The tables also compare the proposed PCTFC accuracy with respect to using 
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various features. Table 2 presents the performances of the different methods 
for  the case of the Yushu earthquake using ALOS SAR data. For this data set, 
PCTFC had greater OA compared with OTC and TFC. Furthermore, the EA of 
moderately damaged and destroyed buildings extracted by PCTFC was the hig-
hest.

Table 2.	Accuracy measures for the Yushu earthquake. For details on the accuracy me-
asures (EA, MR, FDR), see the main text.

Method
Intact building Moderately damaged 

building Destroyed building
OA(%)

EA(%) MR(%) FDR(%) EA(%) MR(%) FDR(%) EA(%) MR(%) FDR(%)

PCTFC 88.7 11.3 9.4 86.4 13.6 12.1 84.8 15.2 11.7 87.8

OTC 86.2 13.8 17.2 66.7 33.3 30.8 60.5 39.5 10.1 68.9

TFC 89.6 10.4 21.9 74.4 25.6 18.7 63.9 36.1 6.7 76.2

Table 2 shows that the EA of PCTFC for the three categories of damage to buil-
dings was about 85% and the FDR was about 10%. Image analysis showed that 
the section of detection error was distributed mainly along the roads. This is at-
tributable to the selected correlation window size, whereby road information is 
incorporated in the calculation causing partial false detection.

The OA of building extraction based on OTC was 68.9%. The EA of moderately 
damaged buildings was 66% but the FDR was relatively high. Comparison with 
the results of visual interpretation indicated that some moderately damaged bui-
ldings were wrongly classified as intact, especially in built-up areas near roads. 
Again, this error could be attributed to the influence of roads. The EA of damaged 
buildings by OTC was about 60%. This is because some peripheral parts of some 
destroyed buildings were missed or were wrongly classified.

The OA value based on TFC was 76.2%. The EA of intact buildings was high 
(close to 90%), whereas for destroyed buildings, it was about 64%, although the 
FDR was low. Some intact buildings were classified as damaged and some mode-
rately damaged or destroyed buildings were classified as intact. Compared with 
PCTFC, the EA was low. This is because the PCTFC method combines the chara-
cteristics of multiple texture parameters that reflect damage information more 
accurately and it avoids false detection and misses.

Table 3 presents the performances of the different methods using Sentinel-1 SAR 
data. First, it can be seen that the PCTFC method had higher OA. Moreover, 
its  EAs of the three damage degrees were better than the other two methods 
(>80%) and it had lower FDRs. This means that PCA of texture features provides 
the primary contribution for this data set. Second, the MR and FDR of PCTFC 
were both lower than OTC and TFC for moderately damaged and destroyed buil-
dings, demonstrating the method has greater ability to detect slight changes. 
Third, the EA of the OTC method was clearly lower than the other methods, 
while the MR (about 30%) and FDR (>16%) were the highest. This shows that 
texture features can play an important role in the recognition of seismic damage 
to buildings.
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The seismic damage identification maps produced by these methods are illustrated 
in Section 3. From Fig. 7(c), it can be seen that the PCTFC method has great 
ability to resist the effects of noise. Fig. 8(b) shows that traditional OTC methods 
might cause distortion. Thus, it is evident that the combination of PCA and textu-
re features provided the best recognition results.

Table 3.	Accuracy measures for the Nepal earthquake. For details on the accuracy me-
asures (EA, MR, FDR), see the main text.

Method
Intact building Moderately damaged 

building Destroyed building
OA(%)

EA(%) MR(%) FDR(%) EA(%) MR(%) FDR(%) EA(%) MR(%) FDR(%)

PCTFC 82.1 17.9 22.8 84.3 15.7 9.6 86.9 13.1 10.5 84.6

OTC 69.4 30.6 28.5 66.8 33.2 19.7 65.4 34.6 16.8 65.3

TFC 82.4 17.6 24.0 75.2 24.8 15.6 76.5 23.5 22.9 79.4

6. Conclusions

In this paper, a novel extraction method based on the PC correlation of multiple 
texture features, specifically oriented toward the analysis of multitemporal SAR 
images of earthquakes, was presented. The approach combined texture features 
with multiple characteristic parameters. It obtained the most abundant compo-
nent of earthquake damage using a PC transformation, following which a corre-
lation analysis was performed. ALOS data of the 2010 Yushu earthquake and 
Sentinel-1 data of the 2015 Nepal earthquake were used as case studies, which 
demonstrated that the change detection method based on PC correlation has gre-
ater detection accuracy than original change detection methods based on intensi-
ty image correlation.

Two novel methodological contributions distinguish this work from traditional 
techniques for the extraction of buildings from SAR images: (1) the combination 
of PCA and correlation analysis breaks the traditional method of direct change 
detection based on texture features and (2) the information of earthquake-dama-
ged buildings is extracted based on the form of the PC and multiple texture fea-
tures. Traditional change detection methods based on texture features usually use 
the texture feature as the variable and the difference method is used to detect the 
change information directly. Here, the texture feature was used as the variable of 
the correlation analysis. The correlation between the two was calculated and the 
difference from the intensity map caused by other interference factors was avoi-
ded. Traditional change detection methods based on texture features are aimed 
only at a single characteristic parameter, for which information might be limited. 
Thus, further features could be obtained based on this method in future research. 
Because of the second contribution above, PCA was performed by fusing multiple 
texture feature parameters to obtain the information-rich component. This 
avoided the loss of valuable information and it improved the accuracy of identifi-
cation.
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The case studies of the Yushu and Nepal earthquakes proved the effective
ness  of  the proposed method. Experimental results showed that the ME, VA, 
and  HOM  parameters could effectively characterize the different degrees of 
earthquake-related building damage and the correlation analysis of three of the 
PCs could effectively improve the accuracy of identification. As expected, the com-
bination of PCA and texture features provided better performance and led to 
higher recognition accuracy. In future work, it will be possible to select the deta-
iled results of the investigation of single buildings using field survey data for va-
lidation.
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Prepoznavanje građevina pogođenih potresom 
temeljem korelacijske detekcije promjena 
obilježja teksture na SAR snimkama

SAŽETAK. Detekcija oštećenja građevina uzrokovanih potresom od presudne je važ-
nosti za upravljanje rizicima od katastrofa i aktivnostima prilikom elementarnih 
nepogoda. Metodologije detekcije promjena, koristeći satelitske snimke kao što su 
podaci radara sa sintetičkim otvorom antene (SAR), korištene su u detekciji oštećenja 
od potresa. Informacije sadržane unutar SAR podataka, koje se odnose na oštećenja 
građevina uzrokovana potresom, mogu lako sadržavati šumove zbog drugih faktora. 
Ovaj rad prikazuje viševremenski pristup detekciji promjena kako bi se identificirale 
i procijenile informacije koje se odnose na oštećenja od potresa koristeći u potpunosti 
značajke teksture SAR snimaka. Pristup se temelji na dvije snimke koje su izrađene 
kroz glavne komponente višestrukih osobina tekstura. Neovisna analiza glavnih kom-
ponenti koristi se kako bi se izdvojile komponente višestrukih tekstura. Nakon toga 
provodi se korelacijska analiza kako bi se detektirale informacije o distribuciji gra-
đevina oštećenih potresom. Učinkovitost ove tehnike ispitana je u gradu Jiegu (kojega 
je 2010. godine pogodio potres Yushu) te u dolini Kathmandu (koju je 2015. godine 
pogodio potres Nepal), u kojoj je ukupna točnost detektiranja građevina bila 87,8%, 
odnosno 84,6%. Rezultati međusobne provjere valjanosti pokazali su da je predloženi 
pristup osjetljiviji od postojećih metoda za detektiranje oštećenih građevina. Općenito 
govoreći, metoda je učinkovit pristup detektiranja oštećenja koji može u budućnosti 
pružati potporu u aktivnostima upravljanja nakon potresa.

Ključne riječi:	detekcija promjena, radar sa sintetičkim otvorom antene, potres, kore-
lacijska analiza, analiza glavnih komponenti, obilježje teksture.
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